Your browser doesn't support javascript.
loading
Time course changes in in vivo muscle mechanical function and Ca2+ regulation of force following experimentally induced gradual ovarian failure in mice.
Hinks, Avery; Dalton, Benjamin E; Mashouri, Parastoo; Flewwelling, Luke D; Pyle, William Glen; Cheng, Arthur J; Power, Geoffrey A.
Afiliação
  • Hinks A; Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Dalton BE; Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Mashouri P; Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.
  • Flewwelling LD; Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, Toronto, Canada.
  • Pyle WG; IMPART Team Canada, Dalhousie Medicine, Dalhousie University, Saint John, New Brunswick, Canada.
  • Cheng AJ; Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of Health, York University, Toronto, Canada.
  • Power GA; Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada.
Exp Physiol ; 109(5): 711-728, 2024 May.
Article em En | MEDLINE | ID: mdl-38500268
ABSTRACT
The abrupt cessation of ovarian hormone release is associated with declines in muscle contractile function, yet the impact of gradual ovarian failure on muscle contractility across peri-, early- and late-stage menopause remains unclear. In this study, a 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model was used to examine time course changes in muscle mechanical function. Plantar flexors of female mice (VCD n = 10; CON n = 8) were assessed at 40 (early perimenopause), 80 (late perimenopause), 120 (menopause onset) and 176 (late menopause) days post-initial VCD injection. A torque-frequency relationship was established across a range of frequencies (10-200 Hz). Isotonic dynamic contractions were elicited against relative loads (10-80% maximal isometric torque) to determine the torque-velocity-power relationship. Mice then performed a fatigue task using intermittent 100 Hz isometric contractions until torque dropped by 60%. Recovery of twitch, 10 Hz and 100 Hz torque were tracked for 10 min post-task failure. Additionally, intact muscle fibres from the flexor digitorum brevis underwent a fatigue task (50 repetitions at 70 Hz), and 10 and 100 Hz tetanic [Ca2+] were monitored for 10 min afterward. VCD mice exhibited 16% lower twitch torque than controls across all time points. Apart from twitch torque, 10 Hz torque and 10 Hz tetanic [Ca2+], where VCD showed greater values relative to pre-fatigue during recovery, no significant differences were observed between control and VCD mice during recovery. These results indicate that gradual ovarian failure has minimal detriments to in vivo muscle mechanical function, with minor alterations observed primarily for low-frequency stimulation during recovery from fatigue.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos de Vinila / Cálcio / Músculo Esquelético / Fadiga Muscular / Contração Muscular Limite: Animals Idioma: En Revista: Exp Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos de Vinila / Cálcio / Músculo Esquelético / Fadiga Muscular / Contração Muscular Limite: Animals Idioma: En Revista: Exp Physiol Assunto da revista: FISIOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Canadá