Your browser doesn't support javascript.
loading
Direct visualization of stacking-selective self-intercalation in epitaxial Nb1+xSe2 films.
Wang, Hongguang; Zhang, Jiawei; Shen, Chen; Yang, Chao; Küster, Kathrin; Deuschle, Julia; Starke, Ulrich; Zhang, Hongbin; Isobe, Masahiko; Huang, Dennis; van Aken, Peter A; Takagi, Hidenori.
Afiliação
  • Wang H; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany. hgwang@fkf.mpg.de.
  • Zhang J; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Shen C; Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany. chenshen@tmm.tu-darmstadt.de.
  • Yang C; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Küster K; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Deuschle J; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Starke U; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Zhang H; Department of Materials and Earth Sciences, Technical University of Darmstadt, Darmstadt, Germany.
  • Isobe M; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Huang D; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany. D.Huang@fkf.mpg.de.
  • van Aken PA; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
  • Takagi H; Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
Nat Commun ; 15(1): 2541, 2024 Mar 21.
Article em En | MEDLINE | ID: mdl-38514672
ABSTRACT
Two-dimensional (2D) van der Waals (vdW) materials offer rich tuning opportunities generated by different stacking configurations or by introducing intercalants into the vdW gaps. Current knowledge of the interplay between stacking polytypes and intercalation often relies on macroscopically averaged probes, which fail to pinpoint the exact atomic position and chemical state of the intercalants in real space. Here, by using atomic-resolution electron energy-loss spectroscopy in a scanning transmission electron microscope, we visualize a stacking-selective self-intercalation phenomenon in thin films of the transition-metal dichalcogenide (TMDC) Nb1+xSe2. We observe robust contrasts between 180°-stacked layers with large amounts of Nb intercalants inside their vdW gaps and 0°-stacked layers with little detectable intercalants inside their vdW gaps, coexisting on the atomic scale. First-principles calculations suggest that the films lie at the boundary of a phase transition from 0° to 180° stacking when the intercalant concentration x exceeds ~0.25, which we could attain in our films due to specific kinetic pathways. Our results offer not only renewed mechanistic insights into stacking and intercalation, but also open up prospects for engineering the functionality of TMDCs via stacking-selective self-intercalation.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha