Your browser doesn't support javascript.
loading
Multipolar Conjugated Polymer Framework Derived Ionic Sieves via Electronic Modulation for Long-Life All-Solid-State Li Batteries.
Yang, Xue; Fang, Long; Li, Jing; Liu, Cong; Zhong, Linfeng; Yang, Fan; Wang, Xiaotong; Zhang, Zishou; Yu, Dingshan.
Afiliação
  • Yang X; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Fang L; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Li J; Guangdong-Hong Kong-Macau Joint Laboratory for Photonic Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa, Macao SAR, 999078, China.
  • Liu C; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Zhong L; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Yang F; School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478, China.
  • Wang X; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Zhang Z; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
  • Yu D; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
Angew Chem Int Ed Engl ; 63(23): e202401957, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38526332
ABSTRACT
Here, we build a tunable multipolar conjugated polymer framework platform via pore wall chemistry to probe the role of electronic structure engineering in improving the Li+ conduction by theoretical studies. Guided by theoretical prediction, we develop a new cyano-vinylene-linked multipolar polymer framework namely CNF-COF, which can act as efficient ion sieves to modify solid polymer electrolytes to simultaneously tune Li+ migration and stable Li anodes for long-lifespan all-solid-state (ASS) Li metal batteries at high rate. The dual-decoration of cyano and fluorine groups in CNF-COF favorably regulates electronic structure via multipolar donor-acceptor electronic effects to afford proper energy band structure and abundant electron-rich sites for enhanced oxidative stability, facilitated ion-pair dissociation and suppressed anion movements. Thus, the CNF-COF incorporation into poly (ethylene oxide) (PEO) electrolytes not only renders fast selective Li+ transport but also facilitates the Li dendrite suppression. Specifically, the constructed PEO composite electrolyte with an ultra-low CNF-COF content of only 0.5 wt % is endowed with a wide electrochemical window, a high ionic conductivity of 0.634 mS cm-1 at 60 °C and a large Li+ transference number of 0.81-remarkably outperforming CNF-COF-free counterparts (0.183 mS cm-1 and 0.22). As such, the Li symmetric cell delivers stable Li plating/stripping over 1400 h at 0.1 mA cm-2. Impressively, by coupling with LiFePO4 (LFP) cathodes, the assembled ASS Li battery under 60 °C allows for stable cycling over 2000 cycles at 1 C and over 1000 cycles even at 2 C with a large capacity retention of ~75 %, surpassing most reported ASS Li batteries using PEO-based electrolytes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China