Your browser doesn't support javascript.
loading
Qingkailing granule alleviates pulmonary fibrosis by inhibiting PI3K/AKT and SRC/STAT3 signaling pathways.
Li, Hong; Xin, Guang; Zhou, Qilong; Yu, Xiuxian; Wan, Chengyu; Wang, Yilan; Wen, Ao; Zhang, Kun; Zhang, Boli; Cao, Yu; Huang, Wen.
Afiliação
  • Li H; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Xin G; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Zhou Q; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Yu X; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Wan C; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Wang Y; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Wen A; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Zhang K; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Zhang B; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Innovative Chinese Medicine Academician Workstation, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Cao Y; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
  • Huang W; Department of Emergency Medicine, Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China. Electronic address: huangwen@scu.edu.cn.
Bioorg Chem ; 146: 107286, 2024 May.
Article em En | MEDLINE | ID: mdl-38537336
ABSTRACT
Pulmonary fibrosis (PF) poses a significant challenge with limited treatment options and a high mortality rate of approximately 45 %. Qingkailing Granule (QKL), derived from the Angong Niuhuang Pill, shows promise in addressing pulmonary conditions. Using a comprehensive approach, combining network pharmacology analysis with experimental validation, this study explores the therapeutic effects and mechanisms of QKL against PF for the first time. In vivo, QKL reduced collagen deposition and suppressed proinflammatory cytokines in a bleomycin-induced PF mouse model. In vitro studies demonstrated QKL's efficacy in protecting cells from bleomycin-induced injury and reducing collagen accumulation and cell migration in TGF-ß1-induced pulmonary fibrosis cell models. Network pharmacology analysis revealed potential mechanisms, confirmed by western blotting, involving the modulation of PI3K/AKT and SRC/STAT3 signaling pathways. Molecular docking simulations highlighted interactions between QKL's active compounds and key proteins, showing inhibitory effects on epithelial damage and fibrosis. Collectively, these findings underscore the therapeutic potential of QKL in alleviating pulmonary inflammation and fibrosis through the downregulation of PI3K/AKT and SRC/STAT3 signaling pathways, with a pivotal role attributed to its active compounds.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar / Medicamentos de Ervas Chinesas Limite: Animals Idioma: En Revista: Bioorg Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrose Pulmonar / Medicamentos de Ervas Chinesas Limite: Animals Idioma: En Revista: Bioorg Chem Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China