Your browser doesn't support javascript.
loading
Binucleate Rhizoctonia induced tomato resistance against Rhizoctonia solani via affecting antioxidants and cell wall reinforcement.
Taheri, Parissa; Hosseini-Zahani, Fatemeh; Tarighi, Saeed.
Afiliação
  • Taheri P; Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Hosseini-Zahani F; Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
  • Tarighi S; Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
Heliyon ; 10(6): e27881, 2024 Mar 30.
Article em En | MEDLINE | ID: mdl-38545156
ABSTRACT
Isolates of Rhizoctonia solani (AG-3 PT, AG-4 HG-I, AG-4 HG-II) and one binucleate Rhizoctonia sp. (BNR) belonging to AG-Bb were investigated for pathogenicity on tomato cultivar Mobil. The BNR isolate revealed the lowest virulence and it was used as biocontrol agent against R. solani AG-4 HG-II, which showed the highest virulence on tomato. Inoculation of tomato plants with the hypovirulent BNR isolate reduced the disease symptoms of R. solani and induced resistance. Resistance induction was observed not only on the plants simultaneously inoculated with BNR and R. solani, but also when the plants were inoculated by the BNR and R. solani with time intervals. The peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) activities and expression levels of the corresponding genes in tomato plants increased after R. solani or BNR inoculation. The highest level of antioxidant activities and expression of their genes, lignin and callose formation were observed in the plants inoculated with the BNR and R. solani, simultaneously. The BNR inoculation reduced H2O2 accumulation. The highest level of priming was observed for the POX among other antioxidants tested via application of the BNR. Treatment with potassium cyanide (as a POX inhibitor) reduced basal resistance and BNR-induced resistance (BNR-IR) via reduction of lignification and callose deposition in tomato plants. These findings demonstrated the role of antioxidant enzymes, mainly the POX, in both basal resistance and BNR-IR. Therefore, redox state and antioxidants are involved in cell wall strengthening via lignin and callose formation, as important defense components which decrease the pathogen progress in plant tissues.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Heliyon Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Irã