Your browser doesn't support javascript.
loading
High-Color-Rendition White QLEDs by Balancing Red, Green and Blue Centres in Eco-Friendly ZnCuGaS:In@ZnS Quantum Dots.
Jiang, Jiangyuan; Zhang, Shuai; Shan, Qingsong; Yang, Linxiang; Ren, Jing; Wang, Yongjin; Jeon, Seokwoo; Xiang, Hengyang; Zeng, Haibo.
Afiliação
  • Jiang J; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
  • Zhang S; School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Key Laboratory of Optoelectronics Information Technology, Ministry of Education, Tianjin, 300072, China.
  • Shan Q; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
  • Yang L; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
  • Ren J; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
  • Wang Y; Grünberg Research Centre, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China.
  • Jeon S; Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea.
  • Xiang H; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
  • Zeng H; MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Adv Mater ; 36(21): e2304772, 2024 May.
Article em En | MEDLINE | ID: mdl-38545966
ABSTRACT
White light-emitting diodes (WLEDs) are the key components in the next-generation lighting and display devices. The inherent toxicity of Cd/Pb-based quantum dots (QDs) limits the further application in WLEDs. Recently, more attention is focused on eco-friendly QDs and their WLEDs, especially the phosphor-free WLEDs based on mono-component, which profits from bias-insensitive color stability. However, the imbalanced carrier distribution between red-green-blue luminescent centers, even the absence of a certain luminescent center, hinders their balanced and stable photoluminescence/electroluminescence (PL/EL). Here, an In3+-doped strategy in Zn-Cu-Ga-S@ZnS QDs is first proposed, and the balanced carrier distribution is realized by non-equivalent substitution and In3+ doping concentration modulation. The alleviation of the green emitter by the In3+-related red emitter and the compensation of blue emitter by the Zn-related electronic states contribute to the balanced red-green-blue emitting with high PL quantum yield (PLQY) of 95.3% and long lifetime (T90) of over 1100 h in atmospheric conditions. Thus, the In3+-doped WLEDs can achieve exceedingly slight proportional variations between red-green-blue EL intensity over time (∆CIE = (0.007, 0.009)), and high champion CRI of 94.9. This study proposes a single-component QD with balanced and stable red-green-blue PL/EL spectrum, meeting the requirements of lighting and display.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China