Your browser doesn't support javascript.
loading
EpiSegMix: a flexible distribution hidden Markov model with duration modeling for chromatin state discovery.
Schmitz, Johanna Elena; Aggarwal, Nihit; Laufer, Lukas; Walter, Jörn; Salhab, Abdulrahman; Rahmann, Sven.
Afiliação
  • Schmitz JE; Algorithmic Bioinformatics, Center for Bioinformatics Saar, Saarland Informatics Campus, 66123 Saarbrücken, Germany.
  • Aggarwal N; Fakultät MI, Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany.
  • Laufer L; Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, 66123 Saarbrücken, Germany.
  • Walter J; Department of Genetics, Saarland University, 66123 Saarbrücken, Germany.
  • Salhab A; Department of Genetics, Saarland University, 66123 Saarbrücken, Germany.
  • Rahmann S; Department of Genetics, Saarland University, 66123 Saarbrücken, Germany.
Bioinformatics ; 40(4)2024 03 29.
Article em En | MEDLINE | ID: mdl-38565260
ABSTRACT
MOTIVATION Automated chromatin segmentation based on ChIP-seq (chromatin immunoprecipitation followed by sequencing) data reveals insights into the epigenetic regulation of chromatin accessibility. Existing segmentation methods are constrained by simplifying modeling assumptions, which may have a negative impact on the segmentation quality.

RESULTS:

We introduce EpiSegMix, a novel segmentation method based on a hidden Markov model with flexible read count distribution types and state duration modeling, allowing for a more flexible modeling of both histone signals and segment lengths. In a comparison with existing tools, ChromHMM, Segway, and EpiCSeg, we show that EpiSegMix is more predictive of cell biology, such as gene expression. Its flexible framework enables it to fit an accurate probabilistic model, which has the potential to increase the biological interpretability of chromatin states. AVAILABILITY AND IMPLEMENTATION Source code https//gitlab.com/rahmannlab/episegmix.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cromatina / Epigênese Genética Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cromatina / Epigênese Genética Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha