Your browser doesn't support javascript.
loading
Development of a robotic cluster for automated and scalable cell therapy manufacturing.
Melocchi, Alice; Schmittlein, Brigitte; Jones, Alexis L; Ainane, Yasmine; Rizvi, Ali; Chan, Darius; Dickey, Elaine; Pool, Kelsey; Harsono, Kenny; Szymkiewicz, Dorothy; Scarfogliero, Umberto; Bhatia, Varun; Sivanantham, Amlesh; Kreciglowa, Nadia; Hunter, Allison; Gomez, Miguel; Tanner, Adrian; Uboldi, Marco; Batish, Arpit; Balcerek, Joanna; Kutova-Stoilova, Mariella; Paruthiyil, Sreenivasan; Acevedo, Luis A; Stadnitskiy, Rachel; Carmichael, Sabrina; Aulbach, Holger; Hewitt, Matthew; Jeu, Xavier De Mollerat Du; Robilant, Benedetta di; Parietti, Federico; Esensten, Jonathan H.
Afiliação
  • Melocchi A; Multiply Labs, San Francisco, California, USA; Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy. Electronic address: alice.melocchi@unimi.it.
  • Schmittlein B; Multiply Labs, San Francisco, California, USA.
  • Jones AL; Multiply Labs, San Francisco, California, USA; Department of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
  • Ainane Y; Multiply Labs, San Francisco, California, USA.
  • Rizvi A; Multiply Labs, San Francisco, California, USA.
  • Chan D; Multiply Labs, San Francisco, California, USA.
  • Dickey E; Multiply Labs, San Francisco, California, USA.
  • Pool K; Multiply Labs, San Francisco, California, USA.
  • Harsono K; Multiply Labs, San Francisco, California, USA.
  • Szymkiewicz D; Multiply Labs, San Francisco, California, USA.
  • Scarfogliero U; Multiply Labs, San Francisco, California, USA.
  • Bhatia V; Multiply Labs, San Francisco, California, USA.
  • Sivanantham A; Multiply Labs, San Francisco, California, USA.
  • Kreciglowa N; Multiply Labs, San Francisco, California, USA.
  • Hunter A; Multiply Labs, San Francisco, California, USA.
  • Gomez M; Multiply Labs, San Francisco, California, USA.
  • Tanner A; Multiply Labs, San Francisco, California, USA.
  • Uboldi M; Multiply Labs, San Francisco, California, USA; Sezione di Tecnologia e Legislazione Farmaceutiche "M. E. Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy.
  • Batish A; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.
  • Balcerek J; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.
  • Kutova-Stoilova M; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.
  • Paruthiyil S; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.
  • Acevedo LA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.
  • Stadnitskiy R; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA.
  • Carmichael S; Cytiva Life Sciences, Marlborough, Massachusetts, USA.
  • Aulbach H; Thermo Fisher Scientific, Langenselbold, Germany.
  • Hewitt M; Charles River Scientific, Wilmington, Massachusetts, USA.
  • Jeu XMD; Thermo Fisher Scientific, Carlsbad, California, USA.
  • Robilant BD; Dorian Therapeutics, San Francisco, California, USA.
  • Parietti F; Multiply Labs, San Francisco, California, USA.
  • Esensten JH; Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA; The Advanced Biotherapy Center (ABC), Sheba Medical Center, Tel Hashomer, Israel.
Cytotherapy ; 2024 Mar 15.
Article em En | MEDLINE | ID: mdl-38647505
ABSTRACT
BACKGROUND

AIMS:

The production of commercial autologous cell therapies such as chimeric antigen receptor T cells requires complex manual manufacturing processes. Skilled labor costs and challenges in manufacturing scale-out have contributed to high prices for these products.

METHODS:

We present a robotic system that uses industry-standard cell therapy manufacturing equipment to automate the steps involved in cell therapy manufacturing. The robotic cluster consists of a robotic arm and customized modules, allowing the robot to manipulate a variety of standard cell therapy instruments and materials such as incubators, bioreactors, and reagent bags. This system enables existing manual manufacturing processes to be rapidly adapted to robotic manufacturing, without having to adopt a completely new technology platform. Proof-of-concept for the robotic cluster's expansion module was demonstrated by expanding human CD8+ T cells.

RESULTS:

The robotic cultures showed comparable cell yields, viability, and identity to those manually performed. In addition, the robotic system was able to maintain culture sterility.

CONCLUSIONS:

Such modular robotic solutions may support scale-up and scale-out of cell therapies that are developed using classical manual methods in academic laboratories and biotechnology companies. This approach offers a pathway for overcoming manufacturing challenges associated with manual processes, ultimately contributing to the broader accessibility and affordability for personalized immunotherapies.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cytotherapy Assunto da revista: TERAPEUTICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cytotherapy Assunto da revista: TERAPEUTICA Ano de publicação: 2024 Tipo de documento: Article