Your browser doesn't support javascript.
loading
PfbZIP85 Transcription Factor Mediates ω-3 Fatty Acid-Enriched Oil Biosynthesis by Down-Regulating PfLPAT1B Gene Expression in Plant Tissues.
Huang, Xusheng; Zhou, Yali; Shi, Xianfei; Wen, Jing; Sun, Yan; Chen, Shuwei; Hu, Ting; Li, Runzhi; Wang, Jiping; Jia, Xiaoyun.
Afiliação
  • Huang X; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Zhou Y; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Shi X; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Wen J; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Sun Y; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Chen S; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Hu T; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Li R; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Wang J; College of Agronomy/Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Shanxi Engineering Research Center for Genetics and Metabolism of Specific Crops, Jinzhong 030801, China.
  • Jia X; College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, China.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article em En | MEDLINE | ID: mdl-38673960
ABSTRACT
The basic leucine zipper (bZIP) transcription factor (TF) family is one of the biggest TF families identified so far in the plant kingdom, functioning in diverse biological processes including plant growth and development, signal transduction, and stress responses. For Perilla frutescens, a novel oilseed crop abundant in polyunsaturated fatty acids (PUFAs) (especially α-linolenic acid, ALA), the identification and biological functions of bZIP members remain limited. In this study, 101 PfbZIPs were identified in the perilla genome and classified into eleven distinct groups (Groups A, B, C, D, E, F, G, H, I, S, and UC) based on their phylogenetic relationships and gene structures. These PfbZIP genes were distributed unevenly across 18 chromosomes, with 83 pairs of them being segmental duplication genes. Moreover, 78 and 148 pairs of orthologous bZIP genes were detected between perilla and Arabidopsis or sesame, respectively. PfbZIP members belonging to the same subgroup exhibited highly conserved gene structures and functional domains, although significant differences were detected between groups. RNA-seq and RT-qPCR analysis revealed differential expressions of 101 PfbZIP genes during perilla seed development, with several PfbZIPs exhibiting significant correlations with the key oil-related genes. Y1H and GUS activity assays evidenced that PfbZIP85 downregulated the expression of the PfLPAT1B gene by physical interaction with the promoter. PfLPAT1B encodes a lysophosphatidate acyltransferase (LPAT), one of the key enzymes for triacylglycerol (TAG) assembly. Heterogeneous expression of PfbZIP85 significantly reduced the levels of TAG and UFAs (mainly C181 and C182) but enhanced C183 accumulation in both seeds and non-seed tissues in the transgenic tobacco lines. Furthermore, these transgenic tobacco plants showed no significantly adverse phenotype for other agronomic traits such as plant growth, thousand seed weight, and seed germination rate. Collectively, these findings offer valuable perspectives for understanding the functions of PfbZIPs in perilla, particularly in lipid metabolism, showing PfbZIP85 as a suitable target in plant genetic improvement for high-value vegetable oil production.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Regulação da Expressão Gênica de Plantas / Perilla frutescens / Fatores de Transcrição de Zíper de Leucina Básica Idioma: En Revista: Int J Mol Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Regulação da Expressão Gênica de Plantas / Perilla frutescens / Fatores de Transcrição de Zíper de Leucina Básica Idioma: En Revista: Int J Mol Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China