Your browser doesn't support javascript.
loading
hkb is required for DIP-α expression and target recognition in the Drosophila neuromuscular circuit.
Wang, Yupu; Salazar, Rio J; Simonetta, Luciano T; Sorrentino, Violet; Gatton, Terrence J; Wu, Bill; Vecsey, Christopher G; Carrillo, Robert A.
Afiliação
  • Wang Y; Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA. wangy9@hhmi.org.
  • Salazar RJ; Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA. wangy9@hhmi.org.
  • Simonetta LT; Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA. wangy9@hhmi.org.
  • Sorrentino V; Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
  • Gatton TJ; Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
  • Wu B; Program in Cell and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA.
  • Vecsey CG; Department of Molecular Genetics and Cellular Biology, University of Chicago, Chicago, IL, 60637, USA.
  • Carrillo RA; Neuroscience Institute, University of Chicago, Chicago, IL, 60637, USA.
Commun Biol ; 7(1): 507, 2024 Apr 27.
Article em En | MEDLINE | ID: mdl-38678127
ABSTRACT
Our nervous system contains billions of neurons that form precise connections with each other through interactions between cell surface proteins. In Drosophila, the Dpr and DIP immunoglobulin protein subfamilies form homophilic or heterophilic interactions to instruct synaptic connectivity, synaptic growth, and cell survival. However, the upstream regulatory mechanisms of Dprs and DIPs are not clear. On the other hand, while transcription factors have been implicated in target recognition, their downstream cell surface proteins remain mostly unknown. We conduct an F1 dominant modifier genetic screen to identify regulators of Dprs and DIPs. We identify huckebein (hkb), a transcription factor previously implicated in target recognition of the dorsal Is motor neuron. We show that hkb genetically interacts with DIP-α and loss of hkb leads to complete removal of DIP-α expression specifically in dorsal Is motor neurons. We then confirm that this specificity is through the dorsal Is motor neuron specific transcription factor, even-skipped (eve), which acts downstream of hkb. Analysis of the genetic interaction between hkb and eve reveals that they act in the same pathway to regulate dorsal Is motor neuron connectivity. Our study provides insight into the transcriptional regulation of DIP-α and suggests that distinct regulatory mechanisms exist for the same CSP in different neurons.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Proteínas de Drosophila Limite: Animals Idioma: En Revista: Commun Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Transcrição / Proteínas de Drosophila Limite: Animals Idioma: En Revista: Commun Biol Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos