Your browser doesn't support javascript.
loading
Conserved and novel enhancers in the Aedes aegypti single-minded locus recapitulate embryonic ventral midline gene expression.
Schember, Isabella; Reid, William; Sterling-Lentsch, Geyenna; Halfon, Marc S.
Afiliação
  • Schember I; Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America.
  • Reid W; Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America.
  • Sterling-Lentsch G; Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America.
  • Halfon MS; Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, New York, United States of America.
PLoS Genet ; 20(4): e1010891, 2024 Apr.
Article em En | MEDLINE | ID: mdl-38683842
ABSTRACT
Transcriptional cis-regulatory modules, e.g., enhancers, control the time and location of metazoan gene expression. While changes in enhancers can provide a powerful force for evolution, there is also significant deep conservation of enhancers for developmentally important genes, with function and sequence characteristics maintained over hundreds of millions of years of divergence. Not well understood, however, is how the overall regulatory composition of a locus evolves, with important outstanding questions such as how many enhancers are conserved vs. novel, and to what extent are the locations of conserved enhancers within a locus maintained? We begin here to address these questions with a comparison of the respective single-minded (sim) loci in the two dipteran species Drosophila melanogaster (fruit fly) and Aedes aegypti (mosquito). sim encodes a highly conserved transcription factor that mediates development of the arthropod embryonic ventral midline. We identify two enhancers in the A. aegypti sim locus and demonstrate that they function equivalently in both transgenic flies and transgenic mosquitoes. One A. aegypti enhancer is highly similar to known Drosophila counterparts in its activity, location, and autoregulatory capability. The other differs from any known Drosophila sim enhancers with a novel location, failure to autoregulate, and regulation of expression in a unique subset of midline cells. Our results suggest that the conserved pattern of sim expression in the two species is the result of both conserved and novel regulatory sequences. Further examination of this locus will help to illuminate how the overall regulatory landscape of a conserved developmental gene evolves.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Elementos Facilitadores Genéticos / Regulação da Expressão Gênica no Desenvolvimento / Aedes / Drosophila melanogaster Limite: Animals Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Elementos Facilitadores Genéticos / Regulação da Expressão Gênica no Desenvolvimento / Aedes / Drosophila melanogaster Limite: Animals Idioma: En Revista: PLoS Genet Assunto da revista: GENETICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos