Your browser doesn't support javascript.
loading
Tailoring Electric Double Layer by Cation Specific Adsorption for High-Voltage Quasi-Solid-State Lithium Metal Batteries.
Zhou, Qingjie; Zhao, Huaian; Fu, Chuankai; Jian, Jiyuan; Huo, Hua; Ma, Yulin; Du, Chunyu; Gao, Yunzhi; Yin, Geping; Zuo, Pengjian.
Afiliação
  • Zhou Q; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Zhao H; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Fu C; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Jian J; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Huo H; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Ma Y; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Du C; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Gao Y; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Yin G; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
  • Zuo P; State Key Laboratory of Space Power-Sources,MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92 West-Da Zhi Street, Harbin, 150001, China.
Angew Chem Int Ed Engl ; 63(29): e202402625, 2024 Jul 15.
Article em En | MEDLINE | ID: mdl-38709979
ABSTRACT
The interfacial instability of high-nickel layered oxides severely plagues practical application of high-energy quasi-solid-state lithium metal batteries (LMBs). Herein, a uniform and highly oxidation-resistant polymer layer within inner Helmholtz plane is engineered by in situ polymerizing 1-vinyl-3-ethylimidazolium (VEIM) cations preferentially adsorbed on LiNi0.83Co0.11Mn0.06O2 (NCM83) surface, inducing the formation of anion-derived cathode electrolyte interphase with fast interfacial kinetics. Meanwhile, the copolymerization of [VEIM][BF4] and vinyl ethylene carbonate (VEC) endows P(VEC-IL) copolymer with the positively-charged imidazolium moieties, providing positive electric fields to facilitate Li+ transport and desolvation process. Consequently, the Li||NCM83 cells with a cut-off voltage up to 4.5 V exhibit excellent reversible capacity of 130 mAh g-1 after 1000 cycles at 25 °C and considerable discharge capacity of 134 mAh g-1 without capacity decay after 100 cycles at -20 °C. This work provides deep understanding on tailoring electric double layer by cation specific adsorption for high-voltage quasi-solid-state LMBs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China