Your browser doesn't support javascript.
loading
Prediction of 6-month poststroke spasticity in patients with acute first-ever stroke by machine learning.
Chen, Lilin; Cheng, Shimei; Liang, Shouyi; Song, Yonghao; Chen, Jinshou; Lei, Tingting; Liang, Zhenhong; Zheng, Haiqing.
Afiliação
  • Chen L; Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; chenllin9@mail2.sysu.edu.cn (L.C.); csmgdxy@163.com (S.C.); chenjsh45@mail2.sysu.edu.cn (J.C.); leitt15@lzu.edu.cn (T.L.); zhenghq2@mail.sysu.edu.cn (H.Z.).
  • Cheng S; Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; chenllin9@mail2.sysu.edu.cn (L.C.); csmgdxy@163.com (S.C.); chenjsh45@mail2.sysu.edu.cn (J.C.); leitt15@lzu.edu.cn (T.L.); zhenghq2@mail.sysu.edu.cn (H.Z.).
  • Liang S; Department of Rehabilitation Medicine, Maoming People's Hospital, Maoming 525000, China; lsy15976517882@163.com (S.L.); Liang2922615@163.com (Z.L.).
  • Song Y; Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; songyh22@mails.tsinghua.edu.cn (Y.S.).
  • Chen J; Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; chenllin9@mail2.sysu.edu.cn (L.C.); csmgdxy@163.com (S.C.); chenjsh45@mail2.sysu.edu.cn (J.C.); leitt15@lzu.edu.cn (T.L.); zhenghq2@mail.sysu.edu.cn (H.Z.).
  • Lei T; Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; chenllin9@mail2.sysu.edu.cn (L.C.); csmgdxy@163.com (S.C.); chenjsh45@mail2.sysu.edu.cn (J.C.); leitt15@lzu.edu.cn (T.L.); zhenghq2@mail.sysu.edu.cn (H.Z.).
  • Liang Z; Department of Rehabilitation Medicine, Maoming People's Hospital, Maoming 525000, China; lsy15976517882@163.com (S.L.); Liang2922615@163.com (Z.L.).
  • Zheng H; Department of Rehabilitation Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China; chenllin9@mail2.sysu.edu.cn (L.C.); csmgdxy@163.com (S.C.); chenjsh45@mail2.sysu.edu.cn (J.C.); leitt15@lzu.edu.cn (T.L.); zhenghq2@mail.sysu.edu.cn (H.Z.).
Article em En | MEDLINE | ID: mdl-38713588
ABSTRACT

OBJECTIVE:

Poststroke spasticity (PSS) reduces arm function and leads to low levels of independence. This study suggested applying machine learning (ML) from routinely available data to support the clinical management of PSS.

DESIGN:

172 patients with acute first-ever stroke were included in this prospective cohort study. Twenty clinical information and rehabilitation assessments were obtained to train various ML algorithms for predicting 6-month PSS defined by a modified Ashworth scale (MAS) score ≥ 1. Factors significantly relevant were also defined.

RESULTS:

The study results indicated that multivariate adaptive regression spline (area under the curve (AUC) value 0.916; 95% confidence interval (CI) 0.906-0.923), adaptive boosting (AUC 0.962; 95% CI 0.952-0.973), random forest (RF) (AUC 0.975; 95% CI 0.968-0.981), support vector machine (SVM) (AUC 0.980; 95% CI 0.970-0.989) outperformed the traditional logistic model (AUC 0.897; 95% CI 0.884-0.910) (P < 0.05). Among all of the algorithms, the RF and SVM models outperformed the others (P < 0.05). FMA score, days in hospital, age, stroke location, and paretic side were the most important features.

CONCLUSION:

These findings suggest that ML algorithms can help augment clinical decision-making processes for the assessment of PSS occurrence, which may enhance the efficacy of management for patients with PSS in the future.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Am J Phys Med Rehabil Assunto da revista: MEDICINA FISICA / REABILITACAO Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Am J Phys Med Rehabil Assunto da revista: MEDICINA FISICA / REABILITACAO Ano de publicação: 2024 Tipo de documento: Article