Your browser doesn't support javascript.
loading
Advanced Detection of Failed LEDs in a Short Circuit for Automotive Lighting Applications.
Martínez-Pérez, Jose R; Carvajal, Miguel A; Santaella, Juan J; López-Ruiz, Nuria; Escobedo, Pablo; Martínez-Olmos, Antonio.
Afiliação
  • Martínez-Pérez JR; R&D Department, Valeo, 23600 Martos, Spain.
  • Carvajal MA; Department of Electronics and Computer Technology, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación (ETSIIT), University of Granada, 18014 Granada, Spain.
  • Santaella JJ; R&D Department, Valeo, 23600 Martos, Spain.
  • López-Ruiz N; Department of Electronics and Computer Technology, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación (ETSIIT), University of Granada, 18014 Granada, Spain.
  • Escobedo P; Department of Electronics and Computer Technology, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación (ETSIIT), University of Granada, 18014 Granada, Spain.
  • Martínez-Olmos A; Department of Electronics and Computer Technology, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación (ETSIIT), University of Granada, 18014 Granada, Spain.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article em En | MEDLINE | ID: mdl-38732907
ABSTRACT
This paper addresses the issue of LED short-circuit fault detection in signaling and lighting systems in the automotive industry. The conventional diagnostic method commonly implemented in newer vehicles relies on measuring the voltage drop across different LED branches and comparing it with threshold values indicating faults caused by open circuits or LED short circuits. With this algorithm, detecting cases of a few LEDs short-circuited within a branch, particularly a single malfunctioning LED, is particularly challenging. In this work, two easily implementable algorithms are proposed to address this issue within the vehicle's control unit. One is based on a mathematical prediction model, while the other utilizes a neural network. The results obtained offer a 100% LED short-circuit fault detection rate in the majority of analyzed cases, representing a significant improvement over the conventional method, even in scenarios involving a single malfunctioning LED within a branch. Additionally, the neural network-based model can accurately predict the number of failed LEDs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Sensors (Basel) Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha