Your browser doesn't support javascript.
loading
LiF-Rich Alloy-Doped SEI Enabling Ultra-Stable and High-Rate Li Metal Anode.
Zhuang, Huifeng; Xiao, Hong; Zhang, Tengfei; Zhang, Fanchao; Han, Pinyu; Xu, Mengyuan; Dai, Wenjing; Jiao, Junrong; Jiang, Lei; Gao, Qiuming.
Afiliação
  • Zhuang H; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Xiao H; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Zhang T; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Zhang F; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Han P; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Xu M; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Dai W; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Jiao J; Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, P. R. China.
  • Jiang L; Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China.
  • Gao Q; Key Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
Angew Chem Int Ed Engl ; : e202407315, 2024 May 31.
Article em En | MEDLINE | ID: mdl-38818545
ABSTRACT
Li metal is regarded as the "Holy Grail" in the next generation of anode materials due to its high theoretical capacity and low redox potential. However, sluggish Li ions interfacial transport kinetics and uncontrollable Li dendrites growth limit practical application of the energy storage system in high-power device. Herein, separators are modified by the addition of a coating, which spontaneously grafts onto the Li anode interface for in situ lithiation. The resultant alloy possessing of strong electron-donating property promotes the decomposition of lithium bistrifluoromethane sulfonimide in the electrolyte to form a LiF-rich alloy-doped solid electrolyte interface (SEI) layer. High ionic alloy solid solution diffusivity and electric field dispersion modulation accelerate Li ions transport and uniform stripping/plating, resulting in a high-power dendrite-free Li metal anode interface. Surprisingly, the formulated SEI layer achieves an ultra-long cycle life of over 8000 h (20,000 cycles) for symmetric cells at a current density of 10 mA cm-2. It also ensures that the NCM(811)//PP@Au//Li full cell at ultra-high currents (40 C) completes the charging/discharging process in only 68 s to provide high capacity of 151 mAh g-1. The results confirm that this scalable strategy has great development potential in realizing high power dendrite-free Li metal anode.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article