Your browser doesn't support javascript.
loading
Linear mixed-effect models for correlated response to process electroencephalogram recordings.
Meinardi, Vanesa B; López, Juan M Díaz; Fajreldines, Hugo Diaz; Boyallian, Carina; Balzarini, Monica.
Afiliação
  • Meinardi VB; I.A.P Ciencias Humanas, Universidad Nacional de Villa María, Arturo Jauretche 1555, 5900 Villa María, Córdoba, Argentina.
  • López JMD; Centro de Investigación y Transferencia. UNVM, Arturo Jauretche 1555, 5900 Córdoba, Argentina.
  • Fajreldines HD; Instituto Argentino de Ciencias de la Conducta (IACCo), Entre Ríos 419, 5000 Córdoba, Argentina.
  • Boyallian C; Facultad de Matemática, Física, Astronomía y Computación, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.
  • Balzarini M; Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5000 Córdoba, Argentina.
Cogn Neurodyn ; 18(3): 1197-1207, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38826650
ABSTRACT
A data set of clinical studies of electroencephalogram recordings (EEG) following data acquisition protocols in control individuals (Eyes Closed Wakefulness - Eyes Open Wakefulness, Hyperventilation, and Optostimulation) are quantified with information theory metrics, namely permutation Shanon entropy and permutation Lempel Ziv complexity, to identify functional changes. This work implement Linear mixed-effects models (LMEMs) for confirmatory hypothesis testing. The results show that EEGs have high variability for both metrics and there is a positive correlation between them. The mean of permutation Lempel-Ziv complexity and permutation Shanon entropy used simultaneously for each of the four states are distinguishable from each other. However, used separately, the differences between permutation Lempel-Ziv complexity or permutation Shanon entropy of some states were not statistically significant. This shows that the joint use of both metrics provides more information than the separate use of each of them. Despite their wide use in medicine, LMEMs have not been commonly applied to simultaneously model metrics that quantify EEG signals. Modeling EEGs using a model that characterizes more than one response variable and their possible correlations represents a new way of analyzing EEG data in neuroscience.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cogn Neurodyn Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Cogn Neurodyn Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Argentina