Your browser doesn't support javascript.
loading
Fast-Curing of Liquid Crystal Thermosets Enabled by End-Groups Regulation and In Situ Monitoring by Triboelectric Spectroscopy.
Zhang, Haiyang; Han, Yufei; Guan, Qingbao; You, Zhengwei; Zhu, Meifang.
Afiliação
  • Zhang H; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engin
  • Han Y; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engin
  • Guan Q; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engin
  • You Z; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engin
  • Zhu M; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engin
Adv Mater ; : e2403908, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38828745
ABSTRACT
The development of high-performance polymer is crucial for the fabrication of triboelectric nanogenerators (TENGs) used in extreme conditions. Liquid crystal polyarylate thermosets (LCTs) demonstrate great potential as triboelectric material by virtue of exceptional comprehensive properties. However, there are only a few specific end-groups like phenylethynyl matching the LCT polycondensation temperature (above 300 °C). Moreover, the excellent properties of LCTs rely on the crosslinked network formed with long curing time at high temperature, restricting their further application in triboelectric material. Herein, a fast-curing LCT is designed by terminating with 4-maleimidophenol possessing appropriate reactivity. The resultant LCT (MA-LC-MA) exhibits much lower polycondensation temperature (250-270 °C) and curing temperature of 300 °C within only 1 min compared to typical LCTs (cured at 370 °C for 1 h). Furthermore, the cured MA-LC-MA retains a high glass transition temperature of 135 °C, storage modulus of 6 MPa even at 350 °C, and great electrical output performance. Additionally, triboelectric measurement related to the dielectric properties that vary with crosslinked network is innovatively utilized as an analysis technique of curing progress. This work provides a new strategy to design high-performance TENGs and promotes the development of next generation thermosets in extreme conditions.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2024 Tipo de documento: Article