Your browser doesn't support javascript.
loading
Compensated DOE in a VHG-based waveguide display to improve uniformity.
Opt Express ; 32(10): 18017-18032, 2024 May 06.
Article em En | MEDLINE | ID: mdl-38858968
ABSTRACT
Augmented reality head-mounted displays (AR-HMDs) utilizing diffractive waveguides have emerged as a popular research focus. However, the illuminance uniformity over the fields of view (FOV) is often unsatisfactory in volume holographic grating (VHG) based waveguide displays. This paper proposes a high uniformity AR waveguide display system. Firstly, the angular uniformity of the VHG-based waveguide displays is analyzed. Subsequently, diffractive optical elements (DOEs) are seamlessly integrated onto the outer coupling surface of the waveguide substrate to improve the angular uniformity through phase compensation. To design the DOE phase, the multi-objective stochastic gradient descent (MO-SGD) algorithm is proposed. A single DOE is used to compensating various images form the image source. A hybrid loss, which includes the learned perceptual image patch similarity (LPIPS) metric, is applied to enhance the algorithm performance. Simulation results show that the proposed method effectively suppresses illumination degradation at the edge FOV in exit pupil images of the waveguide display system. In the results, the peak signal-to-noise ratio (PSNR) is improved by 5.54 dB. Optical experiments validate the effectiveness of the proposed method. The measured nonuniformity (NU) against FOVs is improved by 53.05% from 0.3749 to 0.1760.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Opt Express Assunto da revista: OFTALMOLOGIA Ano de publicação: 2024 Tipo de documento: Article