Your browser doesn't support javascript.
loading
Electronic Transport Modulation in Ultrastrained Silicon Nanowire Devices.
Bartmann, Maximilian G; Glassner, Sebastian; Sistani, Masiar; Rurali, Riccardo; Palummo, Maurizia; Cartoixà, Xavier; Smoliner, Jürgen; Lugstein, Alois.
Afiliação
  • Bartmann MG; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
  • Glassner S; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
  • Sistani M; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
  • Rurali R; Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.
  • Palummo M; Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata", 00133 Roma, Italy.
  • Cartoixà X; Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain.
  • Smoliner J; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
  • Lugstein A; Institute for Solid State Electronics, Technische Universität Wien, Gußhausstraße 25-25a, 1040 Vienna, Austria.
ACS Appl Mater Interfaces ; 16(26): 33789-33795, 2024 Jul 03.
Article em En | MEDLINE | ID: mdl-38899807
ABSTRACT
In this work, we explore the effect of ultrahigh tensile strain on electrical transport properties of silicon. By integrating vapor-liquid-solid-grown nanowires into a micromechanical straining device, we demonstrate uniaxial tensile strain levels up to 9.5%. Thereby the triply degenerated phonon dispersion relation at the Γ-point of silicon disentangle and the longitudinal phonon modes are used to precisely determine the extent of mechanical strain. Simultaneous electrical transport measurements showed a significant enhancement in the electrical conductance. Aside from considerable reduction of the Si bulk resistivity due to strain-induced band gap narrowing, comparison with quasi-particle GW calculations further reveals that the effective Schottky barrier height at the electrical contacts undergoes a substantial reduction. For these reasons, nanowire devices with ultrastrained channels may be promising candidates for future applications of high-performance silicon-based devices.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Áustria

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Áustria