Your browser doesn't support javascript.
loading
Network-driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response inhibitors.
Papp, Orsolya; Jordán, Viktória; Hetey, Szabolcs; Balázs, Róbert; Kaszás, Valér; Bartha, Árpád; Ordasi, Nóra N; Kamp, Sebestyén; Farkas, Bálint; Mettetal, Jerome; Dry, Jonathan R; Young, Duncan; Sidders, Ben; Bulusu, Krishna C; Veres, Daniel V.
Afiliação
  • Papp O; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Jordán V; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Hetey S; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Balázs R; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Kaszás V; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Bartha Á; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Ordasi NN; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Kamp S; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Farkas B; Turbine Simulated Cell Technologies, Budapest, Hungary.
  • Mettetal J; Oncology Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, USA.
  • Dry JR; Early Data Science, Oncology Data Science, Oncology R&D, AstraZeneca, Waltham, MA, USA.
  • Young D; Search and Evaluation, Oncology R&D, AstraZeneca, Cambridge, UK.
  • Sidders B; Early Data Science, Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK.
  • Bulusu KC; Early Data Science, Oncology Data Science, Oncology R&D, AstraZeneca, Cambridge, UK.
  • Veres DV; Turbine Simulated Cell Technologies, Budapest, Hungary. daniel.veres@turbine.ai.
NPJ Syst Biol Appl ; 10(1): 68, 2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38906870
ABSTRACT
Combination therapy is well established as a key intervention strategy for cancer treatment, with the potential to overcome monotherapy resistance and deliver a more durable efficacy. However, given the scale of unexplored potential target space and the resulting combinatorial explosion, identifying efficacious drug combinations is a critical unmet need that is still evolving. In this paper, we demonstrate a network biology-driven, simulation-based solution, the Simulated Cell™. Integration of omics data with a curated signaling network enables the accurate and interpretable prediction of 66,348 combination-cell line pairs obtained from a large-scale combinatorial drug sensitivity screen of 684 combinations across 97 cancer cell lines (BAC = 0.62, AUC = 0.7). We highlight drug combination pairs that interact with DNA Damage Response pathways and are predicted to be synergistic, and deep network insight to identify biomarkers driving combination synergy. We demonstrate that the cancer cell 'avatars' capture the biological complexity of their in vitro counterparts, enabling the identification of pathway-level mechanisms of combination benefit to guide clinical translatability.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dano ao DNA / Neoplasias Limite: Humans Idioma: En Revista: NPJ Syst Biol Appl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Hungria

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dano ao DNA / Neoplasias Limite: Humans Idioma: En Revista: NPJ Syst Biol Appl Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Hungria