Your browser doesn't support javascript.
loading
Data-driven prediction of continuous renal replacement therapy survival.
Zamanzadeh, Davina; Feng, Jeffrey; Petousis, Panayiotis; Vepa, Arvind; Sarrafzadeh, Majid; Karumanchi, S Ananth; Bui, Alex A T; Kurtz, Ira.
Afiliação
  • Zamanzadeh D; Department of Computer Science, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
  • Feng J; Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
  • Petousis P; Clinical and Translation Science Institute, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
  • Vepa A; Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
  • Sarrafzadeh M; Department of Computer Science, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
  • Karumanchi SA; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, 90048, CA, USA.
  • Bui AAT; Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, 90095, CA, USA. buia@mii.ucla.edu.
  • Kurtz I; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
Nat Commun ; 15(1): 5440, 2024 Jun 27.
Article em En | MEDLINE | ID: mdl-38937447
ABSTRACT
Continuous renal replacement therapy (CRRT) is a form of dialysis prescribed to severely ill patients who cannot tolerate regular hemodialysis. However, as the patients are typically very ill to begin with, there is always uncertainty whether they will survive during or after CRRT treatment. Because of outcome uncertainty, a large percentage of patients treated with CRRT do not survive, utilizing scarce resources and raising false hope in patients and their families. To address these issues, we present a machine learning-based algorithm to predict short-term survival in patients being initiated on CRRT. We use information extracted from electronic health records from patients who were placed on CRRT at multiple institutions to train a model that predicts CRRT survival outcome; on a held-out test set, the model achieves an area under the receiver operating curve of 0.848 (CI = 0.822-0.870). Feature importance, error, and subgroup analyses provide insight into bias and relevant features for model prediction. Overall, we demonstrate the potential for predictive machine learning models to assist clinicians in alleviating the uncertainty of CRRT patient survival outcomes, with opportunities for future improvement through further data collection and advanced modeling.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Aprendizado de Máquina / Terapia de Substituição Renal Contínua Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Aprendizado de Máquina / Terapia de Substituição Renal Contínua Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos