Your browser doesn't support javascript.
loading
Light-Induced Transformation of Virus-Like Particles on TiO2.
Kohantorabi, Mona; Ugolotti, Aldo; Sochor, Benedikt; Roessler, Johannes; Wagstaffe, Michael; Meinhardt, Alexander; Beck, E Erik; Dolling, Daniel Silvan; Garcia, Miguel Blanco; Creutzburg, Marcus; Keller, Thomas F; Schwartzkopf, Matthias; Vayalil, Sarathlal Koyiloth; Thuenauer, Roland; Guédez, Gabriela; Löw, Christian; Ebert, Gregor; Protzer, Ulrike; Hammerschmidt, Wolfgang; Zeidler, Reinhard; Roth, Stephan V; Di Valentin, Cristiana; Stierle, Andreas; Noei, Heshmat.
Afiliação
  • Kohantorabi M; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Ugolotti A; Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy.
  • Sochor B; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Roessler J; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
  • Wagstaffe M; Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany.
  • Meinhardt A; German Center for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany.
  • Beck EE; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Dolling DS; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Garcia MB; University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
  • Creutzburg M; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Keller TF; University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
  • Schwartzkopf M; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Vayalil SK; University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
  • Thuenauer R; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Guédez G; University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
  • Löw C; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Ebert G; Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany.
  • Protzer U; Department of Physics, University of Hamburg, Notkestraße 9-11, 22607 Hamburg, Germany.
  • Hammerschmidt W; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Zeidler R; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Roth SV; Applied Science Cluster, UPES, 248007 Dehradun, India.
  • Di Valentin C; Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), 22607 Hamburg, Germany.
  • Stierle A; Centre for Structural Systems Biology (CSSB), 22607 Hamburg, Germany.
  • Noei H; Technology Platform Light Microscopy and Image Analysis (TP MIA), Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Article em En | MEDLINE | ID: mdl-38959130
ABSTRACT
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Titânio / Raios Ultravioleta / SARS-CoV-2 Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Titânio / Raios Ultravioleta / SARS-CoV-2 Limite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Alemanha