Your browser doesn't support javascript.
loading
Tandem Mass Spectrometry Approaches for Differentiation and Quantification Pidotimod and Its Three Isomers in the Gas Phase.
Zhang, Caiyu; Liu, Yang; He, Lan; Li, Wei.
Afiliação
  • Zhang C; Chemical Drugs Division, National Institutes for Food and Drug Control, Beijing, China.
  • Liu Y; Chemical Drugs Division, National Institutes for Food and Drug Control, Beijing, China.
  • He L; Chemical Drugs Division, National Institutes for Food and Drug Control, Beijing, China.
  • Li W; College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
Chirality ; 36(8): e23699, 2024 Aug.
Article em En | MEDLINE | ID: mdl-39034278
ABSTRACT
Pidotimod is a chiral drug that possesses two chiral centers, resulting in three isomeric impurities (analytes, A). This study employs electrospray ionization ion trap mass spectrometry (ESI-MS) through collision-induced dissociation (CID) to investigate the chiral recognition of pidotimod and its three isomers to eliminate chromatographic separation. Three approaches were explored (1) Protonated molecules in CID exhibited discriminative potential for diastereomers, with the ability to distinguish between S,S and R,R configurations, albeit with an Rchiral value of ~1.8. However, differentiation between R,S and S,R configurations was not achievable. (2) Alkali adductions (lithium and sodium) only discerned diastereomers. The Rchiral values of the diastereomers obtained from alkali adduct ions were significantly lower than those obtained from protonated ions. (3) Therefore, a third approach was used to address the challenge of distinguishing between R,S and S,R configurations, including the introduction of chiral references (ref) and transition metals (MII) to form metal-bound complexes [MII(A)(ref)-H]+. Additionally, we synthesized a novel ligand, 4-(N-tert-butoxycarbonyl [Boc]-L-prolinamido)phenol (denoted as ligand A), by modifying N-t-Boc-L-Pro with 2-aminophenol, which, in combination with CuII and NiII, enabled simultaneous differentiation of all four isomers. CuII complexes exhibited significant chiral selectivity between R,S and S,R configurations. Density functional theory calculations were performed to further elucidate the stereodynamic behavior and stoichiometry of these ions in the gas phase. These calculations revealed the interaction energy and coordination sites of the precursor ions in the gas phase, correlating well with MS/MS experiment results. Additionally, the logarithm of the CuII complexes' characteristic fragment ion abundance ratio demonstrated a strong linear relationship with enantiomeric excess (ee). This study presents a novel strategy for chiral drug quality control that eliminates chromatographic separation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Chirality Assunto da revista: BIOLOGIA MOLECULAR / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Chirality Assunto da revista: BIOLOGIA MOLECULAR / QUIMICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China