Your browser doesn't support javascript.
loading
Optimizing and Predicting Antidepressant Efficacy in Patients with Major Depressive Disorder Using Multi-Omics Analysis and the Opade AI Prediction Tools.
Corrivetti, Giulio; Monaco, Francesco; Vignapiano, Annarita; Marenna, Alessandra; Palm, Kaia; Fernández-Arroyo, Salvador; Frigola-Capell, Eva; Leen, Volker; Ibarrola, Oihane; Amil, Burak; Caruson, Mattia Marco; Chiariotti, Lorenzo; Palacios-Ariza, Maria Alejandra; Hoekstra, Pieter J; Chiang, Hsin-Yin; Floareș, Alexandru; Fagiolini, Andrea; Fasano, Alessio.
Afiliação
  • Corrivetti G; Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy.
  • Monaco F; European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy.
  • Vignapiano A; Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy.
  • Marenna A; European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy.
  • Palm K; Department of Mental Health, Azienda Sanitaria Locale Salerno, 84123 Salerno, Italy.
  • Fernández-Arroyo S; European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy.
  • Frigola-Capell E; European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy.
  • Leen V; Protobios, 12618 Tallinn, Estonia.
  • Ibarrola O; Centre for Omic Sciences, Joint Unit Eurecat Technological Centre of Catalonia-Rovira i Virgili University, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain.
  • Amil B; Mental Health Research Group, Institut d'Investigació Biomèdica de Girona-CERCA, 17190 Girona, Spain.
  • Caruson MM; Mental Health and Addictions Network, Institut Assistència Sanitària (IAS), 17190 Girona, Spain.
  • Chiariotti L; Perseus Biomics BV, 3300 Tienen, Belgium.
  • Palacios-Ariza MA; Biokeralty Research Institute AIE, 01510 Vitoria-Gasteiz, Spain.
  • Hoekstra PJ; Department of Psychiatry, Faculty of Medicine, Istanbul Medipol University, 34214 Istanbul, Turkey.
  • Chiang HY; Mama Health Technologies GmbH, 14482 Potsdam, Germany.
  • Floareș A; Ceinge Biotecnologie Avanzate SCRL, 80131 Napoli, Italy.
  • Fagiolini A; Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá 110811, Colombia.
  • Fasano A; Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
Brain Sci ; 14(7)2024 Jun 28.
Article em En | MEDLINE | ID: mdl-39061399
ABSTRACT
According to the World Health Organization (WHO), major depressive disorder (MDD) is the fourth leading cause of disability worldwide and the second most common disease after cardiovascular events. Approximately 280 million people live with MDD, with incidence varying by age and gender (female to male ratio of approximately 21). Although a variety of antidepressants are available for the different forms of MDD, there is still a high degree of individual variability in response and tolerability. Given the complexity and clinical heterogeneity of these disorders, a shift from "canonical treatment" to personalized medicine with improved patient stratification is needed. OPADE is a non-profit study that researches biomarkers in MDD to tailor personalized drug treatments, integrating genetics, epigenetics, microbiome, immune response, and clinical data for analysis. A total of 350 patients between 14 and 50 years will be recruited in 6 Countries (Italy, Colombia, Spain, The Netherlands, Turkey) for 24 months. Real-time electroencephalogram (EEG) and patient cognitive assessment will be correlated with biological sample analysis. A patient empowerment tool will be deployed to ensure patient commitment and to translate patient stories into data. The resulting data will be used to train the artificial intelligence/machine learning (AI/ML) predictive tool.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Brain Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Brain Sci Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Itália