Your browser doesn't support javascript.
loading
Microphase Separation and Gelation through Polymerization-Induced Self-Assembly Using Star Polyethylene Glycols.
Yamanaka, Riku; Sugawara-Narutaki, Ayae; Takahashi, Rintaro.
Afiliação
  • Yamanaka R; Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
  • Sugawara-Narutaki A; Department of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
  • Takahashi R; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
ACS Macro Lett ; 13(8): 1050-1055, 2024 Aug 20.
Article em En | MEDLINE | ID: mdl-39083349
ABSTRACT
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6]), with a total solute concentration of 40 wt %. While the styrene monomer is soluble in [BMIM][PF6], polystyrene is not; thus, self-assembly and cross-linking (gelation) occur. Structural analysis by small-angle X-ray scattering revealed that a relatively ordered microphase-separated structure for PISA was observed. Two-arm PEG-PS formed hexagonally packed cylinders, whereas 4- and 8-arm PEG-PS exhibited hexagonal close-packed spheres and disordered spheres. The dynamics, studied by oscillatory rheology, were also influenced by the number of arms; the 4-arm star block copolymers showed the highest plateau modulus. This study demonstrates that the topology is an important factor in controlling the microphase-separated structure and mechanical properties when preparing gels through PISA.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Macro Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: ACS Macro Lett Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Japão