Your browser doesn't support javascript.
loading
scPriorGraph: constructing biosemantic cell-cell graphs with prior gene set selection for cell type identification from scRNA-seq data.
Cao, Xiyue; Huang, Yu-An; You, Zhu-Hong; Shang, Xuequn; Hu, Lun; Hu, Peng-Wei; Huang, Zhi-An.
Afiliação
  • Cao X; School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
  • Huang YA; School of Computer Science, Northwestern Polytechnical University, Xi'an, China. yuanhuang@nwpu.edu.cn.
  • You ZH; School of Computer Science, Northwestern Polytechnical University, Xi'an, China. zhuhongyou@nwpu.edu.cn.
  • Shang X; School of Computer Science, Northwestern Polytechnical University, Xi'an, China.
  • Hu L; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
  • Hu PW; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China.
  • Huang ZA; Research Office, City University of Hong Kong (Dongguan), Dongguan, 523000, China.
Genome Biol ; 25(1): 207, 2024 Aug 05.
Article em En | MEDLINE | ID: mdl-39103856
ABSTRACT
Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data space. We assume that such relationships can aid in characterizing cell type features and improving cell type recognition accuracy. To this end, we introduce scPriorGraph, a dual-channel graph neural network that integrates multi-level gene biosemantics. Experimental results demonstrate that scPriorGraph effectively aggregates feature values of similar cells using high-quality graphs, achieving state-of-the-art performance in cell type identification.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise de Célula Única Limite: Humans Idioma: En Revista: Genome Biol Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise de Célula Única Limite: Humans Idioma: En Revista: Genome Biol Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China