scPriorGraph: constructing biosemantic cell-cell graphs with prior gene set selection for cell type identification from scRNA-seq data.
Genome Biol
; 25(1): 207, 2024 Aug 05.
Article
em En
| MEDLINE
| ID: mdl-39103856
ABSTRACT
Cell type identification is an indispensable analytical step in single-cell data analyses. To address the high noise stemming from gene expression data, existing computational methods often overlook the biologically meaningful relationships between genes, opting to reduce all genes to a unified data space. We assume that such relationships can aid in characterizing cell type features and improving cell type recognition accuracy. To this end, we introduce scPriorGraph, a dual-channel graph neural network that integrates multi-level gene biosemantics. Experimental results demonstrate that scPriorGraph effectively aggregates feature values of similar cells using high-quality graphs, achieving state-of-the-art performance in cell type identification.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Análise de Célula Única
Limite:
Humans
Idioma:
En
Revista:
Genome Biol
Assunto da revista:
BIOLOGIA MOLECULAR
/
GENETICA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
China