Your browser doesn't support javascript.
loading
Tailoring the Electrode-Electrolyte Interface for Reliable Operation of All-Climate 4.8 V Li||NCM811 Batteries.
Yang, Wujie; Zhang, Zhenjie; Sun, Xinyi; Liu, Yiwen; Sheng, Chuanchao; Chen, Aoyuan; He, Ping; Zhou, Haoshen.
Afiliação
  • Yang W; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • Zhang Z; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • Sun X; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • Liu Y; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • Sheng C; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • Chen A; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • He P; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
  • Zhou H; Department Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing Universi
Angew Chem Int Ed Engl ; : e202410893, 2024 Aug 06.
Article em En | MEDLINE | ID: mdl-39105385
ABSTRACT
Combining high-voltage nickel-rich cathodes with lithium metal anodes is among the most promising approaches for achieving high-energy-density lithium batteries. However, most current electrolytes fail to simultaneously satisfy the compatibility requirements for the lithium metal anode and the tolerance for the ultra-high voltage NCM811 cathode. Here, we have designed an ultra-oxidation-resistant electrolyte by meticulously adjusting the composition of fluorinated carbonates. Our study reveals that a solid-electrolyte interphase (SEI) rich in LiF and Li2O is constructed on the lithium anode through the synergistic decomposition of the fluorinated solvents and PF6 - anion, facilitating smooth lithium metal deposition. The superior oxidation resistance of our electrolyte enables the Li||NCM811 cell to deliver a capacity retention of 80 % after 300 cycles at an ultrahigh cut-off voltage of 4.8 V. Additionally, a pioneering 4.8 V-class lithium metal pouch cell with an energy density of 462.2 Wh kg-1 stably cycles for 110 cycles under harsh conditions of high cathode loading (30 mg cm-2), low N/P ratio (1.18), and lean electrolytes (2.3 g Ah-1).
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2024 Tipo de documento: Article