Your browser doesn't support javascript.
loading
Convolutional Dynamically Convergent Differential Neural Network for Brain Signal Classification.
Article em En | MEDLINE | ID: mdl-39133589
ABSTRACT
The brain signal classification is the basis for the implementation of brain-computer interfaces (BCIs). However, most existing brain signal classification methods are based on signal processing technology, which require a significant amount of manual intervention, such as channel selection and dimensionality reduction, and often struggle to achieve satisfactory classification accuracy. To achieve high classification accuracy and as little manual intervention as possible, a convolutional dynamically convergent differential neural network (ConvDCDNN) is proposed for solving the electroencephalography (EEG) signal classification problem. First, a single-layer convolutional neural network is used to replace the preprocessing steps in previous work. Then, focal loss is used to overcome the imbalance in the dataset. After that, a novel automatic dynamic convergence learning (ADCL) algorithm is proposed and proved for training neural networks. Experimental results on the BCI Competition 2003, BCI Competition III A, and BCI Competition III B datasets demonstrate that the proposed ConvDCDNN framework achieved state-of-the-art performance with accuracies of 100%, 99%, and 98%, respectively. In addition, the proposed algorithm exhibits a higher information transfer rate (ITR) compared with current algorithms.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Ano de publicação: 2024 Tipo de documento: Article