Your browser doesn't support javascript.
loading
In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications.
Anglada-Girotto, Miquel; Ciampi, Ludovica; Bonnal, Sophie; Head, Sarah A; Miravet-Verde, Samuel; Serrano, Luis.
Afiliação
  • Anglada-Girotto M; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. miquel.anglada@crg.eu.
  • Ciampi L; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
  • Bonnal S; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
  • Head SA; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
  • Miravet-Verde S; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain. samuel.miravetverde@biol.ethz.ch.
  • Serrano L; Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland. samuel.miravetverde@biol.ethz.ch.
Nat Commun ; 15(1): 7039, 2024 Aug 15.
Article em En | MEDLINE | ID: mdl-39147755
ABSTRACT
Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies. We identified 1,073 exons impacting cell proliferation, many from genes not previously linked to cancer. Experimental validation confirms their influence on proliferation, especially in highly proliferative cancer cell lines. Integrating pharmacological screens with splicing dependencies highlights the potential driver exons affecting drug sensitivity. Our models also allow predicting treatment outcomes from tumor transcriptomes, suggesting applications in precision oncology. This study presents an approach to identifying cancer driver exon and their therapeutic potential, emphasizing alternative splicing as a cancer target.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Éxons / Processamento Alternativo / Proliferação de Células / Neoplasias Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação por Computador / Éxons / Processamento Alternativo / Proliferação de Células / Neoplasias Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Espanha