Structures of influenza A and B replication complexes give insight into avian to human host adaptation and reveal a role of ANP32 as an electrostatic chaperone for the apo-polymerase.
Nat Commun
; 15(1): 6910, 2024 Aug 19.
Article
em En
| MEDLINE
| ID: mdl-39160148
ABSTRACT
Replication of influenza viral RNA depends on at least two viral polymerases, a parental replicase and an encapsidase, and cellular factor ANP32. ANP32 comprises an LRR domain and a long C-terminal low complexity acidic region (LCAR). Here we present evidence suggesting that ANP32 is recruited to the replication complex as an electrostatic chaperone that stabilises the encapsidase moiety within apo-polymerase symmetric dimers that are distinct for influenza A and B polymerases. The ANP32 bound encapsidase, then forms the asymmetric replication complex with the replicase, which is embedded in a parental ribonucleoprotein particle (RNP). Cryo-EM structures reveal the architecture of the influenza A and B replication complexes and the likely trajectory of the nascent RNA product into the encapsidase. The cryo-EM map of the FluB replication complex shows extra density attributable to the ANP32 LCAR wrapping around and stabilising the apo-encapsidase conformation. These structures give new insight into the various mutations that adapt avian strain polymerases to use the distinct ANP32 in mammalian cells.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Vírus da Influenza A
/
Replicação Viral
/
Proteínas de Ligação a RNA
/
Chaperonas Moleculares
/
Microscopia Crioeletrônica
/
Eletricidade Estática
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Nat Commun
Assunto da revista:
BIOLOGIA
/
CIENCIA
Ano de publicação:
2024
Tipo de documento:
Article
País de afiliação:
França