Your browser doesn't support javascript.
loading
Statistical data analysis of x-ray spectroscopy data enabled by neural network accelerated Bayesian inference.
MacDonald, M J; Hammel, B A; Bachmann, B; Bitter, M; Efthimion, P; Gaffney, J A; Gao, L; Hammel, B D; Hill, K W; Kraus, B F; MacPhee, A G; Peterson, L; Schneider, M B; Scott, H A; Thorn, D B; Yeamans, C B.
Afiliação
  • MacDonald MJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hammel BA; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bachmann B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bitter M; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA.
  • Efthimion P; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA.
  • Gaffney JA; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Gao L; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA.
  • Hammel BD; SambaNova Systems, Palo Alto, California 94303, USA.
  • Hill KW; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA.
  • Kraus BF; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543, USA.
  • MacPhee AG; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Peterson L; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Schneider MB; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Scott HA; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Thorn DB; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Yeamans CB; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article em En | MEDLINE | ID: mdl-39171981
ABSTRACT
Bayesian inference applied to x-ray spectroscopy data analysis enables uncertainty quantification necessary to rigorously test theoretical models. However, when comparing to data, detailed atomic physics and radiation transfer calculations of x-ray emission from non-uniform plasma conditions are typically too slow to be performed in line with statistical sampling methods, such as Markov Chain Monte Carlo sampling. Furthermore, differences in transition energies and x-ray opacities often make direct comparisons between simulated and measured spectra unreliable. We present a spectral decomposition method that allows for corrections to line positions and bound-bound opacities to best fit experimental data, with the goal of providing quantitative feedback to improve the underlying theoretical models and guide future experiments. In this work, we use a neural network (NN) surrogate model to replace spectral calculations of isobaric hot-spots created in Kr-doped implosions at the National Ignition Facility. The NN was trained on calculations of x-ray spectra using an isobaric hot-spot model post-processed with Cretin, a multi-species atomic kinetics and radiation code. The speedup provided by the NN model to generate x-ray emission spectra enables statistical analysis of parameterized models with sufficient detail to accurately represent the physical system and extract the plasma parameters of interest.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Idioma: En Revista: Rev Sci Instrum Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos