Your browser doesn't support javascript.
loading
Post-selection inference in regression models for group testing data.
Shen, Qinyan; Gregory, Karl; Huang, Xianzheng.
Afiliação
  • Shen Q; Department of Statistics, University of South Carolina, Columbia, SC 29208, United States of America.
  • Gregory K; Department of Statistics, University of South Carolina, Columbia, SC 29208, United States of America.
  • Huang X; Department of Statistics, University of South Carolina, Columbia, SC 29208, United States of America.
Biometrics ; 80(3)2024 Jul 01.
Article em En | MEDLINE | ID: mdl-39282732
ABSTRACT
We develop a methodology for valid inference after variable selection in logistic regression when the responses are partially observed, that is, when one observes a set of error-prone testing outcomes instead of the true values of the responses. Aiming at selecting important covariates while accounting for missing information in the response data, we apply the expectation-maximization algorithm to compute maximum likelihood estimators subject to LASSO penalization. Subsequent to variable selection, we make inferences on the selected covariate effects by extending post-selection inference methodology based on the polyhedral lemma. Empirical evidence from our extensive simulation study suggests that our post-selection inference results are more reliable than those from naive inference methods that use the same data to perform variable selection and inference without adjusting for variable selection.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador Limite: Humans Idioma: En Revista: Biometrics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Algoritmos / Simulação por Computador Limite: Humans Idioma: En Revista: Biometrics Ano de publicação: 2024 Tipo de documento: Article País de afiliação: Estados Unidos