Reversal by cytidine of cyclopentenyl cytosine-induced toxicity in mice without compromise of antitumor activity.
Biochem Pharmacol
; 49(2): 173-80, 1995 Jan 18.
Article
em En
| MEDLINE
| ID: mdl-7840794
Among nine compounds surveyed, cytidine was found to be the most effective in reversing the antiproliferative effects of cyclopentenyl cytosine (CPEC) on human T-lymphoblasts (MOLT-4) in culture. Cytidine, at concentrations of 1-25 microM, enabled cells to maintain normal logarithmic growth when added up to 12 hr after exposure to a 200 nM concentration of the oncolytic nucleoside, CPEC. The most abundant CPEC metabolite, CPEC-5'-triphosphate, is a potent [K1 approximately 6 microM] inhibitor of CTP synthetase (EC 6.3.4.2). Accumulation of this inhibitor resulted in a depletion of CTP levels to 17% of their original cellular concentration. Exogenous cytidine reversed CPEC-induced cellular cytotoxicity by suppressing the formation of CPEC-5'-triphosphate by 70%, and by partially replenishing intracellular CTP to at least 60-70% of its original concentration. In vivo, cytidine (500 mg/kg) administered intraperitoneally 4 hr after each daily dose of CPEC (LD10-LD100) for 9 days reduced the toxicity and abolished the lethality of CPEC to non-tumored mice. Of greater practical importance is the finding that, under these experimental conditions, cytidine did not curtail the antineoplastic properties of CPEC in L1210 tumor-bearing mice. Moreover, the concentration range over which CPEC exhibited antineoplastic activity was extended with cytidine administration.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Leucemia L1210
/
Citidina
/
Antineoplásicos
Limite:
Animals
Idioma:
En
Revista:
Biochem Pharmacol
Ano de publicação:
1995
Tipo de documento:
Article