Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 332, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039589

RESUMO

This study investigated the prevalence, morphology, molecular identification, and histopathological effects of larval tapeworms (plerocercoids) infecting the skeletal muscles of the Indian halibut (Psettodes erumei) collected from the coastal waters of the Arabian Gulf. Numerous oval or round blastocysts, measuring 13-26 mm, were found embedded within the muscular tissues of the Indian halibut, rendering the fish unsuitable for human consumption. Morphological and molecular analyses identified the plerocercoids as Dasyrhynchus giganteus (family Dasyrhynchidae), with an overall prevalence of 15.4%. The seasonal prevalence was the highest in summer (14.6%), followed by spring (10.6%), winter (4.4%), and autumn (3.5%). Infection rates increased with fish size. Histopathological examination revealed fibrous connective tissue capsules surrounding the larvae, causing muscular atrophy and degenerative changes, with few inflammatory eosinophilic cells. Molecular and phylogenetic analysis of the 28S rDNA gene sequences confirmed the specimens as D. giganteus, clustered closely with other sequences of D. giganteus with 100% bootstrap values. This study provided valuable insights into the parasitic infection dynamics, seasonal variation, molecular identification, and histopathological effects, highlighting the importance of monitoring fish for food safety and public health implications.


Assuntos
Cestoides , Infecções por Cestoides , Doenças dos Peixes , Filogenia , Estações do Ano , Animais , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Prevalência , Cestoides/genética , Cestoides/classificação , Infecções por Cestoides/veterinária , Infecções por Cestoides/epidemiologia , Infecções por Cestoides/patologia , Infecções por Cestoides/parasitologia , Linguado/parasitologia , Músculo Esquelético/parasitologia , Músculo Esquelético/patologia , RNA Ribossômico 28S/genética
2.
J Clin Microbiol ; 60(8): e0031122, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35852343

RESUMO

Brucellosis poses a significant burden to human and animal health worldwide. Robust and harmonized molecular epidemiological approaches and population studies that include routine disease screening are needed to efficiently track the origin and spread of Brucella strains. Core genome multilocus sequence typing (cgMLST) is a powerful genotyping system commonly used to delineate pathogen transmission routes for disease surveillance and control. Except for Brucella melitensis, cgMLST schemes for Brucella species are currently not established. Here, we describe a novel cgMLST scheme that covers multiple Brucella species. We first determined the phylogenetic breadth of the genus using 612 Brucella genomes. We selected 1,764 genes that were particularly well conserved and typeable in at least 98% of these genomes. We tested the new scheme on 600 genomes and found high agreement with the whole-genome-based single nucleotide polymorphism (SNP) analysis. Next, we applied the scheme to reanalyze the genome of Brucella strains from epidemiologically linked outbreaks. We demonstrated the applicability of the new scheme for high-resolution typing required in outbreak investigations as previously reported with whole-genome SNP methods. We also used the novel scheme to define the global population structure of the genus using 1,322 Brucella genomes. Finally, we demonstrated the possibility of tracing distribution of Brucella strains by performing cluster analysis of cgMLST profiles and found nearly identical cgMLST profiles in different countries. Our results show that sequencing depth of more than 40-fold is optimal for allele calling with this scheme. In summary, this study describes a novel Brucella-wide cgMLST scheme that is applicable in Brucella molecular epidemiology and helps in accurately tracking and thus controlling the sources of infection. The scheme is publicly accessible and should represent a valuable resource for laboratories with limited computational resources and bioinformatics expertise.


Assuntos
Brucella melitensis , Genoma Bacteriano , Animais , Brucella melitensis/genética , Genoma Bacteriano/genética , Humanos , Epidemiologia Molecular/métodos , Tipagem de Sequências Multilocus/métodos , Filogenia
3.
J Clin Microbiol ; 59(7): e0288920, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33827898

RESUMO

Whole-genome sequencing (WGS) has been established for bacterial subtyping and is regularly used to study pathogen transmission, to investigate outbreaks, and to perform routine surveillance. Core-genome multilocus sequence typing (cgMLST) is a bacterial subtyping method that uses WGS data to provide a high-resolution strain characterization. This study aimed at developing a novel cgMLST scheme for Bacillus anthracis, a notorious pathogen that causes anthrax in livestock and humans worldwide. The scheme comprises 3,803 genes that were conserved in 57 B. anthracis genomes spanning the whole phylogeny. The scheme has been evaluated and applied to 584 genomes from 50 countries. On average, 99.5% of the cgMLST targets were detected. The cgMLST results confirmed the classical canonical single-nucleotide-polymorphism (SNP) grouping of B. anthracis into major clades and subclades. Genetic distances calculated based on cgMLST were comparable to distances from whole-genome-based SNP analysis with similar phylogenetic topology and comparable discriminatory power. Additionally, the application of the cgMLST scheme to anthrax outbreaks from Germany and Italy led to a definition of a cutoff threshold of five allele differences to trace epidemiologically linked strains for cluster typing and transmission analysis. Finally, the association of two clusters of B. anthracis with human cases of injectional anthrax in four European countries was confirmed using cgMLST. In summary, this study presents a novel cgMLST scheme that provides high-resolution strain genotyping for B. anthracis. This scheme can be used in parallel with SNP typing methods to facilitate rapid and harmonized interlaboratory comparisons, essential for global surveillance and outbreak analysis. The scheme is publicly available for application by users, including those with little bioinformatics knowledge.


Assuntos
Bacillus anthracis , Bacillus anthracis/genética , Europa (Continente) , Genoma Bacteriano/genética , Alemanha , Humanos , Itália , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único
4.
Anaerobe ; 63: 102212, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32413405

RESUMO

Clostridium perfringens is a globally recognized zoonotic pathogen. We report isolation and genotyping of C. perfringens from neonatal calves, dairy workers and their associated environment in India. A total of 103 fecal samples from neonatal calves, 25 stool swabs from the dairy workers and 50 samples from their associated environment were collected from two dairy farms. C. perfringens was detected in 26 out of 103 (25.2%) neonatal calf samples, 7 out of 25 (28%) human stool samples and 17 out of 50 (34%) environmental samples. C. perfringens type A strains were predominant in neonatal calves (24/26; 92.3%) and associated environment (15/17; 88.2%). In contrast, strains from dairy workers mostly belonged to type F (5/7; 71.4%), which also carried the beta2 toxin gene. Seventeen strains were analyzed by multilocus sequence typing (MLST) for studying genotypic relationship along with 188 C. perfringens strains available from public databases. A total of 112 sequence types (STs) were identified from 205 C. perfringens strains analyzed. A Clonal complex (CC) represented by three STs (ST 98, ST 41 and ST 110) representing predominantly type F (18/20 strains) were mostly associated with human illnesses. Among predominant STs, ST 54 was associated with enteritis cases in foals and dogs and ST 58 associated with necrotic enteritis in poultry. Seventeen Indian strains were assigned to 13 STs. Genetic relatedness among strains of calves, dairy worker and associated environments indicate inter-host transfers and zoonotic spreads.


Assuntos
Infecções por Clostridium , Clostridium perfringens , Tipagem de Sequências Multilocus , Animais , Zoonoses Bacterianas , Bovinos , Doenças dos Bovinos/microbiologia , Infecções por Clostridium/transmissão , Infecções por Clostridium/veterinária , Clostridium perfringens/genética , Clostridium perfringens/isolamento & purificação , Enterotoxinas/genética , Microbiologia Ambiental , Fazendeiros , Fezes/microbiologia , Genes Bacterianos , Variação Genética , Humanos , Índia/epidemiologia , Tipagem de Sequências Multilocus/veterinária , Filogenia
5.
Anaerobe ; 51: 21-25, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29571666

RESUMO

C. difficile has been recognized as a potential zoonotic agent encouraging investigations of C. difficile prevalence and ribotypes in animals. Here we report the prevalence and diversity of Egyptian C. difficile in I) samples from healthy poultry (n = 50), II) samples from diseased poultry (n = 54), and III) poultry meat (n = 150). Thirteen isolates were obtained from seven healthy and five diseased animals, but no C. difficile was cultured from poultry meat. The isolated C. difficile strains belonged to 3 different PCR-ribotypes (039/2, 205 and 001/FLI01). The detection of strains related to RT 001 known for its ability to cause disease in humans makes poultry a potential reservoir for pathogenic C. difficile.


Assuntos
Portador Sadio/veterinária , Clostridioides difficile/classificação , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/veterinária , Carne/microbiologia , Doenças das Aves Domésticas/epidemiologia , Ribotipagem , Animais , Portador Sadio/microbiologia , Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Egito , Reação em Cadeia da Polimerase , Aves Domésticas , Doenças das Aves Domésticas/microbiologia , Prevalência
6.
Avian Dis ; 58(1): 118-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24758123

RESUMO

Newcastle disease (ND) is highly contagious and causes severe economic losses to the poultry industry due to high morbidity and mortality. In this report, we describe the detection of Newcastle disease virus (NDV) in formalin-fixed tissues from an outbreak of ND on broiler farms in Egypt. The affected birds experienced respiratory and/or nervous signs and a 75% mortality rate. Tissue samples were collected and placed in 10% neutral buffered formalin followed by embedding in paraffin. RNA was extracted from 80-microm formalin-fixed paraffin-embedded tissue blocks and recovered in 60 microl of elution buffer. All samples were negative for influenza virus by real-time reverse-transcription (RT)-PCR but positive for NDV. These flocks were known to have been vaccinated with a live NDV vaccine (LaSota strain). The nucleic acid sequences of the virus detected in this study were similar to those of a velogenic virus at its cleavage site 111GRRQKR*F117 and clustered with class II genogroup VII lineage of NDV, with a nucleotide sequence identity of 94%-99%. Although extraction and amplification of NDV from paraffin-embedded tissues from experimentally infected birds has been reported previously, this study reports on the use of RT-PCR on formalin-fixed tissues from actual field samples.


Assuntos
Galinhas , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/genética , Doenças das Aves Domésticas/diagnóstico , Animais , Egito , Formaldeído , Dados de Sequência Molecular , Doença de Newcastle/patologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Inclusão em Parafina/veterinária , Filogenia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/virologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Análise de Sequência de Proteína/veterinária
7.
One Health ; 19: 100860, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39157654

RESUMO

Objective: To provide a comprehensive characterization of Clostridioides difficile antimicrobial resistance (AMR) data in veterinary medicine based on the minimum inhibitory concentrations (MICs) of all antimicrobial agents tested in relation to the techniques used. Methods: A systematic scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews (PRISMA-ScR) and its associated checklist. The objective was to provide a synthesis of the evidence in a summarized and analyzed format.To this end, three scientific databases were consulted: Scopus, PubMed, and Web of Science, up until December 2021. Subsequently, all identified literature was subjected to screening and classification in accordance with the established study criteria, with the objective of subsequent evaluation. Study selection and data extraction: A comprehensive analysis was conducted on studies regarding Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine across various animal species and related sources. The analysis included studies that presented data on antimicrobial susceptibility testing using the E-test, agar dilution, or broth microdilution techniques. The extracted data included minimum inhibitory concentration (MIC) values and a comprehensive characterization analysis. Results: A total of 1582 studies were identified in scientific databases, of which only 80 were subjected to analysis. The research on Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine is most prolific in Europe and North America. The majority of isolates originate from production animals (55%) and pets (15%), with pigs, horses, and cattle being the most commonly studied species. The tested agents' minimum inhibitory concentrations (MICs) and resulting putative antimicrobial resistance profiles exhibited considerable diversity across animal species and sources of isolation. Additionally, AMR characterization has been conducted at the gene and genomic level in animal strains. The E-test was the most frequently utilized method for antimicrobial susceptibility testing (AST). Furthermore, the breakpoints for interpreting the MICs were found to be highly heterogeneous and frequently observed regardless of the geographical origin of the publication. Conclusions: Antimicrobial susceptibility testing techniques and results were found to be diverse and heterogeneous. There is no evidence of an exclusive antimicrobial resistance pattern in any animal species. Despite the phenotypic and genomic data collected over the years, further interdisciplinary studies are necessary. Our findings underscore the necessity for international collaboration to establish uniform standards for C. difficile antimicrobial susceptibility testing (AST) methods and reporting. Such collaboration would facilitate a "One Health" approach to surveillance and control, which is of paramount importance.

8.
Sci Data ; 11(1): 1030, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304666

RESUMO

Tritrichomonas foetus is a parasitic protist responsible for bovine trichomonosis, a reproductive disease associated with significant economic burden to the livestock industry throughout the world. Here, we present a chromosome-level reference genome of T. foetus -KV-1 (ATCC 30924) using short-read (Illumina Miseq), long-read (Oxford Nanopore) and chromatin-linked (Hi-C) sequencing. This is the first chromosome-level genome of a parasitic protist of the order Tritrichomonadida and the second within the Parabasalia lineage, after Trichomonas vaginalis, the human-associated causative agent of the sexually transmitted infection in humans. Our constructed genome is 148 Mb in size, with a N50 length of the scaffolds of 22.9 Mb. The contigs are anchored in five super-scaffolds, corresponding to the expected five chromosomes of the species and covering 78% of the genome assembly. We predict 41,341 protein-coding genes, of which 95.10% have been functionally annotated. This high-quality genome assembly serves as a valuable reference genome for T. foetus to support future studies in functional genomics, genetic conservation and taxonomy.


Assuntos
Doenças dos Bovinos , Genoma de Protozoário , Tritrichomonas foetus , Tritrichomonas foetus/genética , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Cromossomos , Infecções Protozoárias em Animais/parasitologia
9.
Microb Genom ; 10(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39051872

RESUMO

Clostridioides difficile has significant clinical importance as a leading cause of healthcare-associated infections, with symptoms ranging from mild diarrhoea to severe colitis, and possible life-threatening complications. C. difficile ribotype (RT) 002, mainly associated with MLST sequence type (ST) 8, is one of the most common RTs found in humans. This study aimed at investigating the genetic characteristics of 537 C. difficile genomes of ST8/RT002. To this end, we sequenced 298 C. difficile strains representing a new European genome collection, with strains from Germany, Denmark, France and Portugal. These sequences were analysed against a global dataset consisting of 1,437 ST8 genomes available through Enterobase. Our results showed close genetic relatedness among the studied ST8 genomes, a diverse array of antimicrobial resistance (AMR) genes and the presence of multiple mobile elements. Notably, the pangenome analysis revealed an open genomic structure. ST8 shows relatively low overall variation. Thus, clonal isolates were found across different One Health sectors (humans, animals, environment and food), time periods, and geographical locations, suggesting the lineage's stability and a universal environmental source. Importantly, this stability did not hinder the acquisition of AMR genes, emphasizing the adaptability of this bacterium to different selective pressures. Although only 2.4 % (41/1,735) of the studied genomes originated from non-human sources, such as animals, food, or the environment, we identified 9 cross-sectoral core genome multilocus sequence typing (cgMLST) clusters. Our study highlights the importance of ST8 as a prominent lineage of C. difficile with critical implications in the context of One Health. In addition, these findings strongly support the need for continued surveillance and investigation of non-human samples to gain a more comprehensive understanding of the epidemiology of C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Genoma Bacteriano , Ribotipagem , Clostridioides difficile/genética , Clostridioides difficile/classificação , Humanos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/epidemiologia , Tipagem de Sequências Multilocus , Filogenia , Animais , Europa (Continente) , Dinamarca , Sequenciamento Completo do Genoma , Genômica , Farmacorresistência Bacteriana/genética
10.
Virus Genes ; 46(3): 551-3, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23334473

RESUMO

Porcine kobuvirus has been associated with piglet diarrhea in Asia and Europe, but there are no reports of its presence in the U.S. swine farms. We screened intestinal contents from 114 diarrheic pigs and fecal samples from 46 apparently healthy pigs to determine the presence of kobuvirus by reverse transcription-polymerase chain reaction using 3D (RNA polymerase) region primers (amplicon size 216 bp). The samples from ill pigs came from 15 different U.S. states, while those from healthy pigs were obtained from three different farms in Minnesota. Twenty-five (21.9 %) pigs with diarrhea and ten (21.7 %) healthy pigs were positive for kobuvirus. All strains from diarrheic pigs were further typed by means of VP1 region primers (amplicon size 811 bp). Phylogenetic analysis revealed that all porcine kobuvirus strains had 93.1-96.5 % nucleotide identity with NLD45 strain from the Netherlands and BRA24 strain from Brazil in the 3D region. In the VP1 region, only 86.7-88.5 % homology was found with the T247 strain from Japan and 85.8-87.4 % homology with WUH1 strain from China. All 25 kobuvirus positive pigs had mixed infection with transmissible gastroenteritis virus and/or rotavirus (groups A, B, or C). Pigs less than 4 weeks of age showed higher prevalence of kobuvirus than the older pigs. The results of this preliminary study indicate that porcine kobuvirus is present in both healthy and diarrheic pigs in the U.S. and that further studies are needed to determine its role in gastrointestinal infections of pigs.


Assuntos
Fezes/virologia , Kobuvirus/classificação , Kobuvirus/isolamento & purificação , Infecções por Picornaviridae/veterinária , Animais , Análise por Conglomerados , Kobuvirus/genética , Dados de Sequência Molecular , Filogenia , Infecções por Picornaviridae/virologia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Suínos , Estados Unidos , Proteínas Virais/genética
11.
Pathogens ; 12(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37764904

RESUMO

Mergibacter septicus (M. septicus), previously known as Bisgaard Taxon 40, is a recently described species within the Pasteurellaceae family. In this study, we present a M. septicus strain isolated from a common tern (Sterna hirundo) chick that died just after fledging from the Banter See in Wilhelmshaven, Germany. The recovered M. septicus strain underwent microbiological phenotypic characterization, followed by whole genome sequencing on Illumina and Nanopore platforms. Phenotypically, M. septicus 19Y0039 demonstrated resistance to colistin, cephalexin, clindamycin, oxacillin, and penicillin G. The genome analysis revealed a circular 1.8 Mbp chromosome without any extrachromosomal elements, containing 1690 coding DNA sequences. The majority of these coding genes were associated with translation, ribosomal structure and biogenesis, followed by RNA processing and modification, and transcription. Genetic analyses revealed that the German M. septicus strain 19Y0039 is related to the American strain M. septicus A25201T. Through BLAST alignment, twelve putative virulence genes previously identified in the M. septicus type strain A25201T were also found in the German strain. Additionally, 84 putative virulence genes distributed across nine categories, including immune modulation, effector delivery system, nutrition/metabolic factors, regulation, stress survival, adherence, biofilm, exotoxin, and motility, were also identified.

12.
Antibiotics (Basel) ; 12(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36671289

RESUMO

Little is known about zoonotic pathogens and their antimicrobial resistance in South American camelids (SAC) in Germany including Clostridioides (C.) difficile. The aim of this study was to investigate prevalence, molecular characteristics and antimicrobial resistance of C. difficile in SAC. Composite SAC faecal samples were collected in 43 husbandries in Central Germany and cultured for C. difficile. Toxinotyping and ribotyping was done by PCR. Whole genome sequencing was performed with Illumina® Miseq™. The genomes were screened for antimicrobial resistance determinants. Genetic relatedness of the isolates was investigated using core genome multi locus sequence typing (cgMLST) and single nucleotide polymorphism analysis. Antimicrobial susceptibility testing was done using the Etest® method. Eight C. difficile isolates were recovered from seven farms. The isolates belonged to different PCR ribotypes. All isolates were toxinogenic. cgMLST revealed a cluster containing isolates recovered from different farms. Seven isolates showed similar resistance gene patterns. Different phenotypic resistance patterns were found. Agreement between phenotypic and genotypic resistance was identified only in some cases. Consequently, SAC may act as a reservoir for C. difficile. Thus, SAC may pose a risk regarding zoonotic transmission of toxinogenic, potentially human-pathogenic and resistant C. difficile isolates.

13.
Vet Microbiol ; 277: 109637, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36586209

RESUMO

In the current study, 14 Brucella suis biovar 2 (B. suis bv 2) strains isolated from slaughter pigs in Cairo were sequenced using Illumina technology to investigate genetic diversity, antimicrobial resistance (AMR) genes, and virulence-associated determinants. These strains were the first B. suis bv 2 isolates from Egypt. To place them in a global context, 92 genomes of B. suis were retrieved from the NCBI database and used for comparison. The in-silico analysis of MLST showed that all isolates have ST16. No resistome but 43 virulomes have been found without differences in distribution. The cgMLST classified the Egyptian B. suis strains into a complex type (CT) encompassing four distinct cgMLST sequence types. The closest relatives were strain B. suis 94/11 of an unknown origin and a Danish strain. Whole-genome sequencing analysis proved low diversity of Egyptian B. suis isolates; thus, a single introduction event is assumed. Investigation of a large number of B. suis isolates from different governorates is required to tailor control measures to avoid further spread.


Assuntos
Brucella suis , Brucelose , Doenças dos Suínos , Suínos , Animais , Brucella suis/genética , Sus scrofa , Egito/epidemiologia , Brucelose/epidemiologia , Brucelose/veterinária , Tipagem de Sequências Multilocus/veterinária , Fatores de Virulência , Variação Genética , Doenças dos Suínos/epidemiologia
14.
Front Vet Sci ; 9: 1069062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36744226

RESUMO

Campylobacter fetus subsp. venerealis (Cfv) causes bovine genital campylobacteriosis (BGC), a World Organization for Animal Health (WOAH)-listed trade-relevant disease characterized by severe reproductive losses, such as infertility, early embryonic death and abortion in cattle. BGC has significant economic implications that have prompted several countries to adopt stringent eradication and surveillance measures to contain the disease. In Germany, there has been a low incidence of BGC cases over the past 28 years. This study aimed to illustrate the genomic diversity of German Cfv strains isolated from different federal states in Germany. This study analyzed 63 Cfv strains, collected between 1985 and 2015, by whole-genome sequencing and compared them with genome data of 91 international Cfv isolates. The phylogenetic analysis showed that the Cfv population is genetically conserved and has geographic clusters. In Germany, one phylogenetic lineage comprising all strains was identified. This German lineage was part of a subclade that probably emerged in the nineteenth century and diversified over time. The results of this study point to a non-recurrent cross-border introduction of Cfv in Germany. The BGC control interventions in Germany can be considered successful as no outbreaks were reported since 2015.

15.
Transbound Emerg Dis ; 69(6): 3952-3963, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36383491

RESUMO

Brucellosis is one of the most common neglected zoonotic diseases globally, with a public health significance and a high economic loss in the livestock industry caused by the bacteria of the genus Brucella. In this study, 136 Egyptian Brucella melitensis strains isolated from animals and humans between 2001 and 2020 were analysed by examining the whole-core-genome single-nucleotide polymorphism (cgSNP) in comparison to the in silico multilocus variable number of tandem repeat analysis (MLVA-16). Almost all Egyptian isolates were belonging to the West Mediterranean clade, except two isolates from buffalo and camel were belonging to the American and East Mediterranean clades, respectively. A significant correlation between the human case of brucellosis and the possible source of infection from animals was found. It seems that several outbreak strains already existing for many years have been spread over long distances and between many governorates. The cgSNP analysis, in combination with epidemiological metadata, allows a better differentiation than the MLVA-16 genotyping method and, hence, the source definition and tracking of outbreak strains. The MLVA based on the currently used 16 markers is not suitable for this task. Our results revealed 99 different cgSNP genotypes with many different outbreak strains, both older and widely distributed ones and rather newly introduced ones as well. This indicates several different incidents and sources of infections, probably by imported animals from other countries to Egypt. Comparing our panel of isolates to public databases by cgSNP analysis, the results revealed near relatives from Italy. Moreover, near relatives from the United States, France, Austria and India were found by in silico MLVA.


Assuntos
Brucella melitensis , Brucelose , Humanos , Animais , Brucella melitensis/genética , Egito/epidemiologia , Polimorfismo de Nucleotídeo Único , Tipagem de Sequências Multilocus/veterinária , Brucelose/epidemiologia , Brucelose/veterinária , Genótipo , Repetições Minissatélites/genética , Variação Genética
16.
Life (Basel) ; 12(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36294983

RESUMO

Anthrax is a zoonotic infection caused by the bacterium Bacillus anthracis (BA). Specific identification of this pathogen often relies on targeting genes located on two extrachromosomal plasmids, which represent the major pathogenicity factors of BA. However, more recent findings show that these plasmids have also been found in other closely related Bacillus species. In this study, we investigated the possibility of identifying species-specific and universally applicable marker peptides for BA. For this purpose, we applied a high-resolution mass spectrometry-based approach for 42 BA isolates. Along with the genomic sequencing data and by developing a bioinformatics data evaluation pipeline, which uses a database containing most of the publicly available protein sequences worldwide (UniParc), we were able to identify eleven universal marker peptides unique to BA. These markers are located on the chromosome and therefore, might overcome known problems, such as observable loss of plasmids in environmental species, plasmid loss during cultivation in the lab, and the fact that the virulence plasmids are not necessarily a unique feature of BA. The identified chromosomally encoded markers in this study could extend the small panel of already existing chromosomal targets and along with targets for the virulence plasmids, may pave the way to an even more reliable identification of BA using genomics- as well as proteomics-based techniques.

17.
Front Microbiol ; 12: 782415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867924

RESUMO

Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM), a serious infection that affects global aquaculture with high economic impact. The present study used whole genome sequences to perform a comparative analysis on 10 Y. ruckeri strains and to explore their genetic relatedness to other members of the genus. Y. ruckeri, Yersinia entomophaga, and Yersinia nurmii formed a species complex that constitutes the most basal lineage of the genus. The results showed that the taxonomy of Y. ruckeri strains is better defined by using a core genome alignment and phylogenetic analysis. The distribution of accessory genes in all Yersinia species revealed the presence of 303 distinctive genes in Y. ruckeri. Of these, 169 genes were distributed in 17 genomic islands potentially involved in the pathogenesis of ERM via (1) encoding virulence factors such as Afp18, Yrp1, phage proteins and (2) improving the metabolic capabilities by enhancing utilization and metabolism of iron, amino acids (specifically, arginine and histidine), and carbohydrates. The genome of Y. ruckeri is highly conserved regarding gene structure, gene layout and functional categorization of genes. It contains various components of mobile genetic elements but lacks the CRISPR-Cas system and possesses a stable set of virulence genes possibly playing a critical role in pathogenicity. Distinct virulence plasmids were exclusively restricted to a specific clonal group of Y. ruckeri (CG4), possibly indicating a selective advantage. Phylogenetic analysis of Y. ruckeri genomes revealed the co-presence of multiple genetically distant lineages of Y. ruckeri strains circulating in Germany. Our results also suggest a possible dissemination of a specific group of strains in the United States, Peru, Germany, and Denmark. In conclusion, this study provides new insights into the taxonomy and evolution of Y. ruckeri and contributes to a better understanding of the pathogenicity of ERM in aquaculture. The genomic analysis presented here offers a framework for the development of more efficient control strategies for this pathogen.

18.
Microbiol Spectr ; 9(2): e0053321, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34704797

RESUMO

Clostridium perfringens is a spore-forming anaerobic pathogen responsible for a variety of histotoxic and intestinal infections in humans and animals. High-resolution genotyping aiming to identify bacteria at strain level has become increasingly important in modern microbiology to understand pathogen transmission pathways and to tackle infection sources. This study aimed at establishing a publicly available genome-wide multilocus sequence-typing (MLST) scheme for C. perfringens. A total of 1,431 highly conserved core genes (1.34 megabases; 50% of the reference genome genes) were indexed for a core genome-based MLST (cgMLST) scheme for C. perfringens. The scheme was applied to 282 ecologically and geographically diverse genomes, showing that the genotyping results of cgMLST were highly congruent with the core genome-based single-nucleotide-polymorphism typing in terms of resolution and tree topology. In addition, the cgMLST provided a greater discrimination than classical MLST methods for C. perfringens. The usability of the scheme for outbreak analysis was confirmed by reinvestigating published outbreaks of C. perfringens-associated infections in the United States and the United Kingdom. In summary, a publicly available scheme and an allele nomenclature database for genomic typing of C. perfringens have been established and can be used for broad-based and standardized epidemiological studies. IMPORTANCE Global epidemiological surveillance of bacterial pathogens is enhanced by the availability of standard tools and sharing of typing data. The use of whole-genome sequencing has opened the possibility for high-resolution characterization of bacterial strains down to the clonal and subclonal levels. Core genome multilocus sequence typing is a robust system that uses highly conserved core genes for deep genotyping. The method has been successfully and widely used to describe the epidemiology of various bacterial species. Nevertheless, a cgMLST typing scheme for Clostridium perfringens is currently not publicly available. In this study, we (i) developed a cgMLST typing scheme for C. perfringens, (ii) evaluated the performance of the scheme on different sets of C. perfringens genomes from different hosts and geographic regions as well as from different outbreak situations, and, finally, (iii) made this scheme publicly available supported by an allele nomenclature database for global and standard genomic typing.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Clostridium perfringens/classificação , Clostridium perfringens/genética , Genoma Bacteriano , Tipagem de Sequências Multilocus/métodos , Alelos , Animais , Técnicas Bacteriológicas , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Surtos de Doenças , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , Reino Unido , Sequenciamento Completo do Genoma
19.
Front Vet Sci ; 8: 705044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513973

RESUMO

Nontyphoidal Salmonella (NTS) is the most reported cause of bacterial foodborne zoonoses in Vietnam, and contaminated pork is one of the main sources of human infection. In recent years, the prevalence of NTS carrying multiple antimicrobial resistance genes (ARGs) have been increased. The genomic characterization along the pig value chain and the identification of ARGs and plasmids have the potential to improve food safety by understanding the dissemination of ARGs from the farm to the table. We report an analysis of 13 S. Derby and 10 S. Rissen isolates, collected in 2013 at different stages in Vietnamese slaughterhouses and markets. VITEK 2 Compact System was used to characterize the phenotypical antimicrobial resistance of the isolates. In addition, whole-genome sequencing (WGS) was used to detect ARGs and plasmids conferring multidrug resistance. Whole genome single nucleotide polymorphism typing was used to determine the genetic diversity of the strains and the spread of ARGs along the pig value chain. Altogether, 86.9% (20/23) of the samples were resistant to at least one antibiotic. Resistance to ampicillin was most frequently detected (73.9%), followed by piperacillin and moxifloxacin (both 69.6%). At least one ARG was found in all strains, and 69.6% (16/23) were multidrug-resistant (MDR). The observed phenotype and genotype of antimicrobial resistance were not always concordant. Plasmid replicons were found in almost all strains [95.6% (22/23)], and the phylogenetic analysis detected nine clusters (S. Derby, n = 5; S. Rissen, n = 4). ARGs and plasmid content were almost identical within clusters. We found six MDR IncHI1s with identical plasmid sequence type in strains of different genetic clusters at the slaughterhouse and the market. In conclusion, high rates of multidrug resistance were observed in Salmonella strains from Vietnam in 2013. Genomic analysis revealed many resistance genes and plasmids, which have the potential to spread along the pig value chain from the slaughterhouse to the market. This study pointed out that bioinformatics analyses of WGS data are essential to detect, trace back, and control the MDR strains along the pig value chain. Further studies are necessary to assess the more recent MDR Salmonella strains spreading in Vietnam.

20.
Front Microbiol ; 12: 771945, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956133

RESUMO

Clostridium septicum is a Gram-positive, toxin-producing, and spore-forming bacterium that is recognized, together with C. perfringens, as the most important etiologic agent of progressive gas gangrene. Clostridium septicum infections are almost always fatal in humans and animals. Despite its clinical and agricultural relevance, there is currently limited knowledge of the diversity and genome structure of C. septicum. This study presents the complete genome sequence of C. septicum DSM 7534T type strain as well as the first comparative analysis of five C. septicum genomes. The taxonomy of C. septicum, as revealed by 16S rRNA analysis as well as by genomic wide indices such as protein-based phylogeny, average nucleotide identity, and digital DNA-DNA hybridization indicates a stable clade. The composition and presence of prophages, CRISPR elements and accessory genetic material was variable in the investigated genomes. This is in contrast to the limited genetic variability described for the phylogenetically and phenotypically related species Clostridium chauvoei. The restriction-modification (RM) systems between two C. septicum genomes were heterogeneous for the RM types they encoded. C. septicum has an open pangenome with 2,311 genes representing the core genes and 1,429 accessory genes. The core genome SNP divergence between genome pairs varied up to 4,886 pairwise SNPs. A vast arsenal of potential virulence genes was detected in the genomes studied. Sequence analysis of these genes revealed that sialidase, hemolysin, and collagenase genes are conserved compared to the α-toxin and hyaluronidase genes. In addition, a conserved gene found in all C. septicum genomes was predicted to encode a leucocidin homolog (beta-channel forming cytolysin) similar (71.10% protein identity) to Clostridium chauvoei toxin A (CctA), which is a potent toxin. In conclusion, our results provide first, valuable insights into strain relatedness and genomic plasticity of C. septicum and contribute to our understanding of the virulence mechanisms of this important human and animal pathogen.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa