Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 16(9)2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27608023

RESUMO

Ambient assisted living can facilitate optimum health and wellness by aiding physical, mental and social well-being. In this paper, patients' psychiatric symptoms are collected through lightweight biosensors and web-based psychiatric screening scales in a smart home environment and then analyzed through machine learning algorithms to provide ambient intelligence in a psychiatric emergency. The psychiatric states are modeled through a Hidden Markov Model (HMM), and the model parameters are estimated using a Viterbi path counting and scalable Stochastic Variational Inference (SVI)-based training algorithm. The most likely psychiatric state sequence of the corresponding observation sequence is determined, and an emergency psychiatric state is predicted through the proposed algorithm. Moreover, to enable personalized psychiatric emergency care, a service a web of objects-based framework is proposed for a smart-home environment. In this framework, the biosensor observations and the psychiatric rating scales are objectified and virtualized in the web space. Then, the web of objects of sensor observations and psychiatric rating scores are used to assess the dweller's mental health status and to predict an emergency psychiatric state. The proposed psychiatric state prediction algorithm reported 83.03 percent prediction accuracy in an empirical performance study.


Assuntos
Moradias Assistidas , Internet , Saúde Mental , Adulto , Idoso , Algoritmos , Área Sob a Curva , Técnicas Biossensoriais , Análise Discriminante , Feminino , Humanos , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Monitorização Ambulatorial , Razão de Chances , Análise de Componente Principal , Curva ROC , Adulto Jovem
2.
IEEE Access ; 8: 215570-215581, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34812371

RESUMO

COVID-19 is a global epidemic. Till now, there is no remedy for this epidemic. However, isolation and social distancing are seemed to be effective preventive measures to control this pandemic. Therefore, in this article, an optimization problem is formulated that accommodates both isolation and social distancing features of the individuals. To promote social distancing, we solve the formulated problem by applying a noncooperative game that can provide an incentive for maintaining social distancing to prevent the spread of COVID-19. Furthermore, the sustainability of the lockdown policy is interpreted with the help of our proposed game-theoretic incentive model for maintaining social distancing where there exists a Nash equilibrium. Finally, we perform an extensive numerical analysis that shows the effectiveness of the proposed approach in terms of achieving the desired social-distancing to prevent the outbreak of the COVID-19 in a noncooperative environment. Numerical results show that the individual incentive increases more than 85% with an increasing percentage of home isolation from 25% to 100% for all considered scenarios. The numerical results also demonstrate that in a particular percentage of home isolation, the individual incentive decreases with an increasing number of individuals.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa