Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(33): 19737-19745, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732430

RESUMO

Immunotherapy is emerging as one of the most effective methods for treating many cancers. However, immunotherapy can still introduce significant off-target toxicity, and methods are sought to enable targeted immunotherapy at tumor sites. Here, we show that relatively large (>100-nm) anionic nanoparticles administered intraperitoneally (i.p.) selectively accumulate in tumor-associated macrophages (TAMs). In a mouse model of metastatic ovarian cancer, fluorescently labeled silica, poly(lactic-co-glycolic acid), and polystyrene nanoparticles administered i.p. were all found to selectively accumulate in TAMs. Quantifying silica particle uptake indicated that >80% of the injected dose was in TAMs. Particles that were smaller than 100 nm or cationic or administered intravenously (i.v.) showed no TAM targeting. Moreover, this phenomenon is likely to occur in humans because when freshly excised human surgical samples were treated with the fluorescent silica nanoparticles no interaction with healthy tissue was seen but selective uptake by TAMs was seen in 13 different patient samples. Ovarian cancer is a deadly disease that afflicts ∼22,000 women per year in the United States, and the presence of immunosuppressive TAMs at tumors is correlated with decreased survival. The ability to selectively target TAMs opens the door to targeted immunotherapy for ovarian cancer.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Imunoterapia , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Neoplasias Ovarianas/terapia , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Feminino , Humanos , Macrófagos/imunologia , Camundongos Nus , Nanopartículas/química , Neoplasias Ovarianas/imunologia , Poliestirenos/administração & dosagem , Poliestirenos/química
2.
Bioconjug Chem ; 32(8): 1581-1592, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34289694

RESUMO

Ovarian cancer is the most lethal gynecological malignancy in the United States. Current standard of treatment includes surgical debulking and chemotherapy, such as cisplatin and paclitaxel. However, the patients' response rate for chemotherapy in ovarian cancer is not optimal, and they often develop chemoresistance and suffer from side effects. Current clinical trials make extensive use of immune checkpoint blockade (ICB) as a novel cancer immunotherapeutic strategy against ovarian tumors. However, the response rates for ICB antibodies remain limited to 10-20% of treated ovarian cancer patients despite the success of this approach in melanoma, renal, head and neck, and nonsmall cell lung cancers. This lack of efficacy is often attributed to the "cold" immune status of ovarian tumors, as these tumors often have a low number of tumor-infiltrating lymphocytes (TILs) but a high number of suppressive immune cells, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), or regulatory T cells (Tregs). Repolarizing TAMs could be a promising strategy to reshape the tumor immune microenvironment and promote antitumor activity when combined with ICBs. Toll-like receptor (TLR) 7 and 8 agonists, such as imiquimod and resiquimod, are potent immunostimulatory molecules with potential to repolarize macrophages. However, these small molecules have poor pharmacokinetic profiles and can induce severe side effects when administered systemically. Previously, our group demonstrated that various large, anionic nanomaterials (silica, PLGA, and polystyrene) specifically target TAMs when administered intraperitoneally (IP) to ovarian tumor-bearing mice. In the present study, we demonstrate that large, anionic liposomes administered IP also efficiently localize to TAMs and can be used to target the delivery of resiquimod. Resiquimod delivered in this targeted fashion promoted activation of M1 macrophages and T cell infiltration, while reducing the percentage of Tregs in the tumor microenvironment. Finally, liposome-formulated resiquimod significantly enhanced the efficacy of PD1 blockade against syngeneic ovarian tumors. We anticipate that further optimization of our liposomal delivery strategy can generate a clinically relevant strategy for more effective and safer immunotherapy for ovarian cancer patients.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Lipossomos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia
3.
Bioconjug Chem ; 30(5): 1415-1424, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30835443

RESUMO

Ovarian cancer is commonly diagnosed only after it has metastasized to the abdominal cavity (stage III). While the current standard of care of intraperitoneal (IP) administration of cisplatin and paclitaxel (PTX) combination chemotherapy has benefit, patient 5-year survival rates are low and have not significantly improved in the past decade. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities. We have previously shown that cisplatin-loaded nanoparticles (NPs) loaded within neural stem cells (NSCs) are selectively delivered to ovarian tumors in the abdominal cavity following IP injection, with no evidence of localization to normal tissue. Here we extended the capabilities of this system to also include PTX delivery. NPs that will be loaded into NSCs must contain a high amount of drug by weight but constrain the release of the drug such that the NSCs are viable after loading and can successfully migrate to tumors. We developed silica coated PTX nanocrystals (Si[PTX-NC]) meeting these requirements. Si[PTX-NC] were more effective than uncoated PTX-NC or Abraxane for loading NSCs with PTX. NSCs loaded with Si[PTX-NC] maintained their migratory ability and, for low dose PTX, were more effective than free PTX-NC or Si[PTX-NC] at killing ovarian tumors in vivo. This work demonstrates that NSC/NP delivery is a platform technology amenable to delivering different therapeutics and enables the pursuit of NSC/NP targeted delivery of the entire preferred chemotherapy regimen for ovarian cancer. It also describes efficient silica coating chemistry for PTX nanocrystals that may have applications beyond our focus on NSC transport.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Nanopartículas/química , Células-Tronco Neurais/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Dióxido de Silício/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Injeções Intraperitoneais , Neoplasias Ovarianas/metabolismo
4.
Langmuir ; 35(52): 17037-17045, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-31804093

RESUMO

Colloidal capsules (or colloidosomes) have been studied for various applications such as therapeutic agent encapsulation, photothermal therapy, imaging, and energy storage. Emulsion-based synthesis is the most common approach for preparing colloidal capsules as it is relatively straightforward and scalable. However, while the initial formation requires only introducing the colloidal subunits into an emulsion and letting them assemble at the interface, a second step is required in order to prepare stable, covalently linked colloidal capsules, and preparing submicron colloidal capsules is quite challenging. Here, we describe a simple and quick one-step method to synthesize covalently linked, stable nanoscale colloidal capsules consisting of gold nanoparticles (NPs) (AuNP) and thiol-containing cross-linkers. Gold nanoparticle capsules (AuNCs) were formed by coating emulsion droplets containing thiol-containing cross-linkers with citrate-stabilized AuNPs. The physicochemical properties of the colloidal capsules can be tailored by changing the building blocks. In order to demonstrate this, colloidal capsules were assembled from AuNPs ranging from 5 to 20 nm in size. The use of the larger 20 nm starting particles resulted in AuNCs with a sufficiently pronounced red shift for λmax to be suitable for biological photothermal applications, where use of a near-infrared laser is strongly preferred. The AuNCs were found to be biocompatible and stable in cell culture conditions and to provide moderate heating. This demonstrates the modularity of the synthesis and the potential advantages of a one-step synthesis to prepare nanoscale gold colloidal capsules.


Assuntos
Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Coloides , Modelos Moleculares , Conformação Molecular , Temperatura
5.
Bioconjug Chem ; 28(6): 1767-1776, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28453256

RESUMO

Ovarian cancer is particularly aggressive once it has metastasized to the abdominal cavity (stage III). Intraperitoneal (IP) as compared to intravenous (IV) administration of chemotherapy improves survival for stage III ovarian cancer, demonstrating that concentrating chemotherapy at tumor sites has therapeutic benefit; unfortunately, IP therapy also increases toxic side effects, thus preventing its completion in many patients. The ability to target chemotherapy selectively to ovarian tumors while sparing normal tissue would improve efficacy and decrease toxicities. We have previously shown that tumor-tropic neural stem cells (NSCs) dramatically improve the intratumoral distribution of nanoparticles (NPs) when given intracerebrally near an orthotopic brain tumor or into a flank xenograft tumor. Here, we show that NPs either conjugated to the surface of NSCs or loaded within the cells are selectively delivered to and distributed within ovarian tumors in the abdominal cavity following IP injection, with no evidence of localization to normal tissue. IP administration is significantly more effective than IV administration, and NPs carried by NSCs show substantially deeper penetration into tumors than free NPs. The NSCs and NPs target and localize to ovarian tumors within 1 h of administration. Pt-loaded silica NPs (SiNP[Pt]) were developed that can be transported in NSCs, and it was found that the NSC delivery of SiNP[Pt] (NSC-SiNP[Pt]) results in higher levels of Pt in tumors as compared to free drug or SiNP[Pt]. To the best of our knowledge, this work represents the first demonstration that cells given IP can target the delivery of drug-loaded NPs.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Células-Tronco Neurais/transplante , Neoplasias Ovarianas/tratamento farmacológico , Feminino , Humanos , Injeções Intraperitoneais , Nanopartículas/administração & dosagem , Células-Tronco Neurais/química , Compostos de Platina/administração & dosagem , Compostos de Platina/uso terapêutico
6.
Stem Cell Res Ther ; 12(1): 205, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761999

RESUMO

BACKGROUND: Immortalized, clonal HB1.F3.CD 21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. METHODS: To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. RESULTS: Here, we report efficient tumor tropism of HB1.F3.CD 21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. CONCLUSIONS: Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Neurais , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/terapia , Peritônio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa