Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
EMBO J ; 42(10): e112234, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36970857

RESUMO

The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.


Assuntos
Antivirais , COVID-19 , Humanos , Interferons/metabolismo , Fosfolipídeos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Viral , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/metabolismo , Internalização do Vírus , Proteínas de Membrana/metabolismo
2.
Mol Ther ; 32(1): 124-139, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37990494

RESUMO

Quiescent human hematopoietic stem cells (HSC) are ideal targets for gene therapy applications due to their preserved stemness and repopulation capacities; however, they have not been exploited extensively because of their resistance to genetic manipulation. We report here the development of a lentiviral transduction protocol that overcomes this resistance in long-term repopulating quiescent HSC, allowing their efficient genetic manipulation. Mechanistically, lentiviral vector transduction of quiescent HSC was found to be restricted at the level of vector entry and by limited pyrimidine pools. These restrictions were overcome by the combined addition of cyclosporin H (CsH) and deoxynucleosides (dNs) during lentiviral vector transduction. Clinically relevant transduction levels were paired with higher polyclonal engraftment of long-term repopulating HSC as compared with standard ex vivo cultured controls. These findings identify the cell-intrinsic barriers that restrict the transduction of quiescent HSC and provide a means to overcome them, paving the way for the genetic engineering of unstimulated HSC.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Transdução Genética , Lentivirus/genética , Terapia Genética/métodos , Imunidade Inata , Vetores Genéticos/genética , Antígenos CD34
3.
J Exp Med ; 221(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953896

RESUMO

Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.


Assuntos
Células Endoteliais , Proteínas de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/imunologia , Transdução de Sinais , Doenças Vasculares/genética , Doenças Vasculares/patologia , Complexo de Golgi/metabolismo , Interferons/metabolismo , Interferons/genética , Masculino , Mutação com Ganho de Função , Mutação , Lactente
4.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38594587

RESUMO

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Assuntos
Desenvolvimento Embrionário , Receptores de IgG , Humanos , Desenvolvimento Embrionário/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Hemangioblastos/metabolismo , Hemangioblastos/citologia , Diferenciação Celular , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Linhagem da Célula , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Transcriptoma , Perfilação da Expressão Gênica , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/citologia
5.
STAR Protoc ; 4(1): 102142, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36881505

RESUMO

Glia, and in particular astrocytes, are one of the major players in neurological and neuroinflammatory disorders. Here, we present a protocol to efficiently generate inflammatory responsive astrocytes from human induced pluripotent stem cells in a monolayer culture. We describe steps for neural differentiation to reach a homogeneous population of neural progenitor cells, followed by their differentiation into neural/glial progenitors. Finally, we detail enrichment to a 90% pure inflammatory responsive astrocyte population. For complete details on the use and execution of this protocol, please refer to Giordano et al.1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Astrócitos , Células Cultivadas , Diferenciação Celular
6.
J Exp Med ; 219(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262626

RESUMO

Aberrant induction of type I IFN is a hallmark of the inherited encephalopathy Aicardi-Goutières syndrome (AGS), but the mechanisms triggering disease in the human central nervous system (CNS) remain elusive. Here, we generated human models of AGS using genetically modified and patient-derived pluripotent stem cells harboring TREX1 or RNASEH2B loss-of-function alleles. Genome-wide transcriptomic analysis reveals that spontaneous proinflammatory activation in AGS astrocytes initiates signaling cascades impacting multiple CNS cell subsets analyzed at the single-cell level. We identify accumulating DNA damage, with elevated R-loop and micronuclei formation, as a driver of STING- and NLRP3-related inflammatory responses leading to the secretion of neurotoxic mediators. Importantly, pharmacological inhibition of proapoptotic or inflammatory cascades in AGS astrocytes prevents neurotoxicity without apparent impact on their increased type I IFN responses. Together, our work identifies DNA damage as a major driver of neurotoxic inflammation in AGS astrocytes, suggests a role for AGS gene products in R-loop homeostasis, and identifies common denominators of disease that can be targeted to prevent astrocyte-mediated neurotoxicity in AGS.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Malformações do Sistema Nervoso , Astrócitos/metabolismo , Doenças Autoimunes do Sistema Nervoso/genética , Dano ao DNA , Humanos , Inflamação/genética , Inflamação/metabolismo , Malformações do Sistema Nervoso/genética
7.
Front Genet ; 11: 488, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499820

RESUMO

Long non-coding RNAs (lncRNAs) are recognized as an important class of regulatory molecules involved in a variety of biological functions. However, the regulatory mechanisms of long non-coding genes expression are still poorly understood. The characterization of the genomic features of lncRNAs is crucial to get insight into their function. In this study, we exploited recent annotations by GENCODE to characterize the genomic and splicing features of long non-coding genes in comparison with protein-coding ones, both in human and mouse. Our analysis highlighted differences between the two classes of genes in terms of their gene architecture. Significant differences in the splice sites usage were observed between long non-coding and protein-coding genes (PCG). While the frequency of non-canonical GC-AG splice junctions represents about 0.8% of total splice sites in PCGs, we identified a significant enrichment of the GC-AG splice sites in long non-coding genes, both in human (3.0%) and mouse (1.9%). In addition, we found a positional bias of GC-AG splice sites being enriched in the first intron in both classes of genes. Moreover, a significant shorter length and weaker donor and acceptor sites were found comparing GC-AG introns to GT-AG introns. Genes containing at least one GC-AG intron were found conserved in many species, more prone to alternative splicing and a functional analysis pointed toward their enrichment in specific biological processes such as DNA repair. Our study shows for the first time that GC-AG introns are mainly associated with lncRNAs and are preferentially located in the first intron. Additionally, we discovered their regulatory potential indicating the existence of a new mechanism of non-coding and PCGs expression regulation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa