Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Rapid Commun Mass Spectrom ; 35(17): e9141, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34106497

RESUMO

RATIONALE: The World Antidoping Agency (WADA) Monitoring program concentrates analytical data from the WADA Accredited Laboratories for substances which are not prohibited but whose potential misuse must be known. The WADA List of Monitoring substances is updated annually, where substances may be removed, introduced or transferred to the Prohibited List, depending on the prevalence of their use. Retroactive processing of old sample datafiles has the potential to create information for the prevalence of use of candidate substances for the Monitoring List in previous years. MetAlign is a freeware software with functionality to reduce the size of liquid chromatography (LC)/high-resolution (HR) full-scan (FS) mass spectrometry (MS) datafiles and to perform a fast search for the presence of substances in thousands of reduced datafiles. METHODS: Validation was performed to the search procedure of MetAlign applied to Anti-Doping Lab Qatar (ADLQ)-screened LC/HR-FS-MS reduced datafiles originated from antidoping samples for tramadol (TRA), ecdysterone (ECDY) and the ECDY metabolite 14-desoxyecdysterone (DESECDY) of the WADA Monitoring List. Searching parameters were related to combinations of accurate masses and retention times (RTs). RESULTS: MetAlign search validation criteria were based on the creation of correct identifications, false positives (FPs) and false negatives (FNs). The search for TRA in 7410 ADLQ routine LC/HR-FS-MS datafiles from the years 2017 to 2020 revealed no false identification (FPs and FNs) compared with the ADLQ WADA reports. ECDY and DESECDY were detected by MetAlign search in approximately 5% of the same cohort of antidoping samples. CONCLUSIONS: MetAlign is a powerful tool for the fast retroactive processing of old reduced datafiles collected in screening by LC/HR-FS-MS to reveal the prevalence of use of antidoping substances. The current study proposed the validation scheme of the MetAlign search procedure, to be implemented per individual substance in the WADA Monitoring program, for the elimination of FNs and FPs.


Assuntos
Anabolizantes/urina , Cromatografia Líquida/métodos , Dopagem Esportivo/métodos , Ecdisterona/urina , Espectrometria de Massas/métodos , Tramadol/urina , Dopagem Esportivo/prevenção & controle , Humanos , Urina/química
2.
Rapid Commun Mass Spectrom ; 32(23): 2055-2064, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30216576

RESUMO

RATIONALE: The World Anti-Doping Agency (WADA) encourages drug-testing laboratories to develop screening methods that can detect as many doping substances as possible in urine. The use of full-scan high-resolution acquisition (FS/HR) with gas chromatography/mass spectrometry (GC/MS) for the detection of known and unknown trimethylsilyl (TMS) derivatives of anabolic-androgenic steroids (AAS) provides anti-doping testing bodies with a new analytical tool. METHODS: The AAS were extracted from urine samples by generic liquid-liquid extraction, after enzymatic hydrolysis, and TMS derivatization. The extracted urine was analyzed by GC/Q-TOF and GC/Q-Orbitrap to compare the performance of the two instrument types for the detection of 46 AAS in human urine. The quantitation of endogenous anabolic steroids and the ability of the two analytical platforms to comply with the requirements for testing as part of the WADA Athlete Biological Passport (ABP) were also assessed. RESULTS: The data presented show that the analytical performance for both instruments complies with the WADA specifications. The limits of detection (LODs) for both instruments are well below the WADA 50% Minimum Required Performance Levels. The mass errors in the current study for the GC/Q-Orbitrap platform are lower than those obtained for the GC/Q-TOF instrument. CONCLUSIONS: The data presented herein proved that both molecular profiling platforms can be used for antidoping screening. The mass accuracies are excellent in both instruments; however, the GC/Q-Orbitrap performs better as it provides higher resolution than the GC/Q-TOF platform.


Assuntos
Androgênios/urina , Cromatografia Gasosa-Espectrometria de Massas/métodos , Esteroides/urina , Detecção do Abuso de Substâncias/métodos , Congêneres da Testosterona/urina , Dopagem Esportivo/prevenção & controle , Humanos , Limite de Detecção , Espectrometria de Massas em Tandem/métodos
3.
Steroids ; 152: 108477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446013

RESUMO

The population based Steroid Profile (SP) ratio of testosterone (T) and epitestosterone (E) has been considered as a biomarker approach to detect testosterone abuse in '80s. The contemporary Antidoping Laboratories apply the World Antidoping Agency (WADA) Technical Document (TD) for Endogenous Androgenic Anabolic Steroids (EAAS) in the analysis of SP during their screening. The SP Athlete Biological Passport (ABP) adaptive model uses the concentrations of the total of free and glucuronide conjugated forms of six EAASs concentrations and ratios measured by GC/MS. In the Antidoping Lab Qatar (ADLQ), the routine LC/MS screening method was used to quantitatively estimate the sulfate conjugated EAAS in the same analytical run as for the rest qualitative analytes. Seven sulfate EAAS were quantified for a number of routine antidoping male and female urine samples during screening. Concentrations, statistical parameters and selected ratios for the 6 EAAS, the 6 sulfate EAAS and 29 proposed ratios of concentrations from both EAAS and sulfate EAAS, which potentially used as SP ABP biomarkers, population reference limits and distributions have been estimated after the GC/MSMS analysis for EAAS and LC/Orbitrap/MS analysis for sulfate EAAS.


Assuntos
Esportes , Esteroides/urina , Detecção do Abuso de Substâncias , Sulfatos/urina , Atletas , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Valores de Referência
4.
J Pharm Biomed Anal ; 151: 10-24, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29291455

RESUMO

The aim of this paper is to present the development and validation of a high-resolution full scan (HR-FS) electrospray ionization (ESI) liquid chromatography coupled to quadrupole Orbitrap mass spectrometer (LC/Q/Orbitrap MS) platform for the screening of prohibited substances in human urine according to World Antidoping Agency (WADA) requirements. The method was also validated for quantitative analysis of six endogenous steroids (epitestosterone, testosterone, 5α-dihydrotestosterone, dehydroepiandrosterone, androsterone and etiocholanolone) in their intact sulfates form. The sample preparation comprised a combination of a hydrolyzed urine liquid-liquid extraction and the dilute & shoot addition of original urine in the extracted aliquot. The HR-FS MS acquisition mode with Polarity Switching was applied in combination of the Quadrupole-Orbitrap mass filter. The HR-FS acquisition of analytical signal, for known and unknown small molecules, allows the inclusion of all analytes detectable with LC-MS for antidoping investigations to identify the use of known or novel prohibited substances and metabolites after electronic data files' reprocessing. The method has been validated to be fit-for-purpose for the antidoping analysis.


Assuntos
Dopagem Esportivo/prevenção & controle , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Urinálise/métodos , Anabolizantes/urina , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Diuréticos/urina , Humanos , Espectrometria de Massas por Ionização por Electrospray/normas , Espectrometria de Massas em Tandem/normas , Urinálise/normas
5.
Artigo em Inglês | MEDLINE | ID: mdl-28850889

RESUMO

This paper presents the development and validation of a high-resolution full scan (FS) electron impact ionization (EI) gas chromatography coupled to quadrupole Time-of-Flight mass spectrometry (GC/QTOF) platform for screening anabolic androgenic steroids (AAS) in human urine samples. The World Antidoping Agency (WADA) enlists AAS as prohibited doping agents in sports, and our method has been developed to comply with the qualitative specifications of WADA to be applied for the detection of sports antidoping prohibited substances, mainly for AAS. The method also comprises of the quantitative analysis of the WADA's Athlete Biological Passport (ABP) endogenous steroidal parameters. The applied preparation of urine samples includes enzymatic hydrolysis for the cleavage of the Phase II glucuronide conjugates, generic liquid-liquid extraction and trimethylsilyl (TMS) derivatization steps. Tandem mass spectrometry (MS/MS) acquisition was applied on few selected ions to enhance the specificity and sensitivity of GC/TOF signal of few compounds. The full scan high resolution acquisition of analytical signal, for known and unknown TMS derivatives of AAS provides the antidoping system with a new analytical tool for the detection designer drugs and novel metabolites, which prolongs the AAS detection, after electronic data files' reprocessing. The current method is complementary to the respective liquid chromatography coupled to mass spectrometry (LC/MS) methodology widely used to detect prohibited molecules in sport, which cannot be efficiently ionized with atmospheric pressure ionization interface.


Assuntos
Anabolizantes/urina , Dopagem Esportivo/prevenção & controle , Cromatografia Gasosa-Espectrometria de Massas/métodos , Androsterona/urina , Criança , Epitestosterona/urina , Feminino , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
6.
Bioanalysis ; 6(6): 881-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24702116

RESUMO

The abuse of unknown designer androgenic anabolic steroids (AAS) is considered to be an issue of significant importance, as AAS are the choice of doping preference according to World Anti-doping Agency statistics. In addition, unknown designer AAS are preferred since the World Anti-doping Agency mass spectrometric identification criteria cannot be applied to unknown molecules. Consequently, cheating athletes have a strong motive to use designer AAS in order to both achieve performance enhancement and to escape from testing positive in anti-doping tests. To face the problem, a synergy is required between the anti-doping analytical science and sports anti-doping regulations. This Review examines various aspects of the designer AAS. First, the structural modifications of the already known AAS to create new designer molecules are explained. A list of the designer synthetic and endogenous AAS is then presented. Second, we discuss progress in the detection of designer AAS using: mass spectrometry and bioassays; analytical data processing of the unknown designer AAS; metabolite synthesis; and, long-term storage of urine and blood samples. Finally, the introduction of regulations from sports authorities as preventive measures for long-term storage and reprocessing of samples, initially reported as negatives, is discussed.


Assuntos
Anabolizantes/metabolismo , Dopagem Esportivo/prevenção & controle , Esteroides/análise , Anabolizantes/administração & dosagem , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa