Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
medRxiv ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38076997

RESUMO

Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)1-3. Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies.

2.
Membranes (Basel) ; 12(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36363654

RESUMO

The self-aggregation of tau, a microtubule-binding protein, has been linked to the onset of Alzheimer's Disease. Recent studies indicate that the disordered tau aggregates, or oligomers, are more toxic than the ordered fibrils found in the intracellular neurofibrillary tangles of tau. At present, details of tau oligomer interactions with lipid rafts, a model of neuronal membranes, are not known. Using molecular dynamics simulations, the lipid-binding events, membrane-damage, and protein folding of tau oligomers on various lipid raft surfaces were investigated. Tau oligomers preferred to bind to the boundary domains (Lod) created by the coexisting liquid-ordered (Lo) and liquid-disordered (Ld) domains in the lipid rafts. Additionally, stronger binding of tau oligomers to the ganglioside (GM1) and phosphatidylserine (PS) domains, and subsequent protein-induced lipid chain order disruption and beta-sheet formation were detected. Our results suggest that GM1 and PS domains, located exclusively in the outer and inner leaflets, respectively, of the neuronal membranes, are specific membrane domain targets, whereas the Lod domains are non-specific targets, of tau oligomers binding to neurons. The molecular details of these specific and non-specific tau bindings to lipid rafts may provide new insights into understanding membrane-associated tauopathies leading to Alzheimer's Disease.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa