Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 61(4): 217-227, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35073057

RESUMO

The strategic redesign of microbial biosynthetic pathways is a compelling route to access molecules of diverse structure and function in a potentially environmentally sustainable fashion. The promise of this approach hinges on an improved understanding of acyl carrier proteins (ACPs), which serve as central hubs in biosynthetic pathways. These small, flexible proteins mediate the transport of molecular building blocks and intermediates to enzymatic partners that extend and tailor the growing natural products. Past combinatorial biosynthesis efforts have failed due to incompatible ACP-enzyme pairings. Herein, we report the design of chimeric ACPs with features of the actinorhodin polyketide synthase ACP (ACT) and of the Escherichia coli fatty acid synthase (FAS) ACP (AcpP). We evaluate the ability of the chimeric ACPs to interact with the E. coli FAS ketosynthase FabF, which represents an interaction essential to building the carbon backbone of the synthase molecular output. Given that AcpP interacts with FabF but ACT does not, we sought to exchange modular features of ACT with AcpP to confer functionality with FabF. The interactions of chimeric ACPs with FabF were interrogated using sedimentation velocity experiments, surface plasmon resonance analyses, mechanism-based cross-linking assays, and molecular dynamics simulations. Results suggest that the residues guiding AcpP-FabF compatibility and ACT-FabF incompatibility may reside in the loop I, α-helix II region. These findings can inform the development of strategic secondary element swaps that expand the enzyme compatibility of ACPs across systems and therefore represent a critical step toward the strategic engineering of "un-natural" natural products.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Proteína de Transporte de Acila/química , Sequência de Aminoácidos , Quimera/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II/metabolismo , Ácido Graxo Sintases/química , Ácidos Graxos/metabolismo , Simulação de Dinâmica Molecular , Policetídeo Sintases/química , Policetídeos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 17(3): 439-451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38081361

RESUMO

BACKGROUND & AIMS: The intestinal epithelium interfaces with a diverse milieu of luminal contents while maintaining robust digestive and barrier functions. Facultative intestinal stem cells are cells that survive tissue injury and divide to re-establish the epithelium. Prior studies have shown autophagic state as functional marker of facultative intestinal stem cells, but regulatory mechanisms are not known. The current study evaluated a post-transcriptional regulation of autophagy as an important factor for facultative stem cell state and tissue regeneration. METHODS: We evaluated stem cell composition, autophagic vesicle content, organoid formation, and in vivo regeneration in mice with intestinal epithelial deletion of the RNA binding protein IGF2 messenger RNA binding protein 1 (IMP1). The contribution of autophagy to resulting in vitro and in vivo phenotypes was evaluated via genetic inactivation of Atg7. Molecular analyses of IMP1 modulation of autophagy at the protein and transcript localization levels were performed using IMP1 mutant studies and single-molecule fluorescent in situ hybridization. RESULTS: Epithelial Imp1 deletion reduced leucine rich repeat containing G protein coupled receptor 5 cell frequency but enhanced both organoid formation efficiency and in vivo regeneration after irradiation. We confirmed prior studies showing increased autophagy with IMP1 deletion. Deletion of Atg7 reversed the enhanced regeneration observed with Imp1 deletion. IMP1 deletion or mutation of IMP1 phosphorylation sites enhanced expression of essential autophagy protein microtubule-associated protein 1 light chain 3ß. Furthermore, immunofluorescence imaging coupled with single-molecule fluorescent in situ hybridization showed IMP1 colocalization with MAP1LC3B transcripts at homeostasis. Stress induction led to decreased colocalization. CONCLUSIONS: Depletion of IMP1 enhances autophagy, which promotes intestinal regeneration via expansion of facultative intestinal stem cells.


Assuntos
Mucosa Intestinal , Intestinos , Animais , Camundongos , Hibridização in Situ Fluorescente , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/metabolismo
4.
mBio ; 13(1): e0375121, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130722

RESUMO

The widespread coronavirus disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have limited understanding of which cells become infected with SARS-CoV-2 in human tissues and where viral RNA localizes on the subcellular level. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA fluorescence in situ hybridization (FISH) with amplification by hybridization chain reaction. We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N), as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type-specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO) but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE (formalin fixation and paraffin embedding) autopsy specimens. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues, as well as extended for other applications, including investigating the viral life cycle, viral diagnostics, and drug screening. IMPORTANCE Here, we developed an in situ RNA detection assay for RNA generated by the SARS-CoV-2 virus. We found viral RNA in lung, lymph node, and placenta samples from pathology specimens from COVID patients. Using high-magnification microscopy, we can visualize the subcellular distribution of these RNA in single cells.


Assuntos
Células Epiteliais Alveolares , COVID-19 , Humanos , Macrófagos Alveolares , SARS-CoV-2 , RNA Viral , Hibridização in Situ Fluorescente , Pulmão/patologia
5.
bioRxiv ; 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34401878

RESUMO

The widespread Coronavirus Disease 2019 (COVID-19) is caused by infection with the novel coronavirus SARS-CoV-2. Currently, we have a limited toolset available for visualizing SARS-CoV-2 in cells and tissues, particularly in tissues from patients who died from COVID-19. Generally, single-molecule RNA FISH techniques have shown mixed results in formalin fixed paraffin embedded tissues such as those preserved from human autopsies. Here, we present a platform for preparing autopsy tissue for visualizing SARS-CoV-2 RNA using RNA FISH with amplification by hybridization chain reaction (HCR). We developed probe sets that target different regions of SARS-CoV-2 (including ORF1a and N) as well as probe sets that specifically target SARS-CoV-2 subgenomic mRNAs. We validated these probe sets in cell culture and tissues (lung, lymph node, and placenta) from infected patients. Using this technology, we observe distinct subcellular localization patterns of the ORF1a and N regions, with the ORF1a concentrated around the nucleus and the N showing a diffuse distribution across the cytoplasm. In human lung tissue, we performed multiplexed RNA FISH HCR for SARS-CoV-2 and cell-type specific marker genes. We found viral RNA in cells containing the alveolar type 2 (AT2) cell marker gene (SFTPC) and the alveolar macrophage marker gene (MARCO), but did not identify viral RNA in cells containing the alveolar type 1 (AT1) cell marker gene (AGER). Moreover, we observed distinct subcellular localization patterns of viral RNA in AT2 cells and alveolar macrophages, consistent with phagocytosis of infected cells. In sum, we demonstrate the use of RNA FISH HCR for visualizing different RNA species from SARS-CoV-2 in cell lines and FFPE autopsy specimens. Furthermore, we multiplex this assay with probes for cellular genes to determine what cell-types are infected within the lung. We anticipate that this platform could be broadly useful for studying SARS-CoV-2 pathology in tissues as well as extended for other applications including investigating the viral life cycle, viral diagnostics, and drug screening.

6.
Sci Rep ; 9(1): 15589, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666546

RESUMO

The ability to produce new molecules of potential pharmaceutical relevance via combinatorial biosynthesis hinges on improving our understanding of acyl-carrier protein (ACP)-protein interactions. However, the weak and transient nature of these interactions makes them difficult to study using traditional spectroscopic approaches. Herein we report that converting the terminal thiol of the E. coli ACP 4'-phosphopantetheine arm into a mixed disulfide with 2-nitro-5-thiobenzoate ion (TNB-) activates this site to form a selective covalent cross-link with the active site cysteine of a cognate ketoacyl synthase (KS). The concomitant release of TNB2-, which absorbs at 412 nm, provides a visual and quantitative measure of mechanistically relevant ACP-KS interactions. The colorimetric assay can propel the engineering of biosynthetic routes to novel chemical diversity by providing a high-throughput screen for functional hybrid ACP-KS partnerships as well as the discovery of novel antimicrobial agents by enabling the rapid identification of small molecule inhibitors of ACP-KS interactions.


Assuntos
Proteína de Transporte de Acila/metabolismo , Colorimetria , Proteína de Transporte de Acila/química , Domínio Catalítico , Nitrobenzoatos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa