Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Ecol Appl ; : e3022, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39099295

RESUMO

Recent losses in the abundance and diversity of arthropods have been documented in many regions and ecosystems. In grasslands, such insect declines are largely attributed to land use, including modern machinery and mowing regimes. However, the effects of different mowing techniques on arthropods remain poorly understood. Using 11 years of data from 111 agricultural grassland plots across Germany, we analyzed the influence of various grassland management variables on the abundance and abundance-accounted species richness of four arthropod orders: Araneae, Coleoptera, Hemiptera, and Orthoptera. The analysis focused on detailed mowing information, for example, days after mowing and mower type, and compared their effect with other aspects of grassland management, that is, rolling, leveling, fertilization, and grazing. We found strong negative effects of mowing on all four arthropod orders, with arthropod abundance being lowest directly after mowing and steadily increasing to three to seven times the abundance after 100 days post-mowing. Likewise, Hemiptera and Coleoptera species richness was 30% higher 100 days after mowing. Mower width showed a positive effect on Orthoptera abundance, but not on the other arthropods. Arthropod abundance and Coleoptera species richness were lowest when a mulcher was used compared to rotary or bar mowers. In addition to mowing, intensive grazing negatively affected Orthoptera abundance but not the other orders. Mowing represents a highly disturbing and iterative stressor with negative effects on arthropod abundance and diversity, likely contributed by mowing-induced mortality and habitat alteration. While modifications of mowing techniques such as mower type or mowing height and width may help to reduce the negative impact of mowing on arthropods, our results show that mowing itself has the most substantial negative effect. Based on our results, we suggest that reduced mowing frequency, omission of mowing in parts of the grassland (refuges), or extensive grazing instead of mowing have the greatest potential to promote arthropod populations.

2.
Biol Lett ; 19(2): 20220500, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36789531

RESUMO

Sparked by reports of insect declines of unexpected extent, there has been a surge in the compilation and analysis of insect time series data. While this effort has led to valuable databases, disagreement remains as to whether, where and why insects are declining. The 'why' question is particularly important because successful insect conservation will need to address the most important drivers of decline. Despite repeated calls for more long-term data, new time series will have to run for decades to quantitatively surpass those currently available. Here we argue that experimentation in addition to quantitative analysis of existing data is needed to identify the most important drivers of insect decline. While most potential drivers of insect population change are likely to have already been identified, their relative importance is largely unknown. Researchers should thus unite and use statistical insight to set up suitable experiments to be able to rank drivers by their importance. Such a coordinated effort is needed to produce the knowledge necessary for conservation action and will also result in increased monitoring and new time series.


Assuntos
Insetos , Projetos de Pesquisa , Animais , Biodiversidade , Ecossistema
3.
Oecologia ; 202(2): 299-312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37270722

RESUMO

Forests canopy gaps play an important role in forest ecology by driving the forest mosaic cycle and creating conditions for rapid plant reproduction and growth. The availability of young plants, which represent resources for herbivores, and modified environmental conditions with greater availability of light and higher temperatures, promote the colonization of animals. Remarkably, the role of gaps on insect communities has received little attention and the source of insects colonizing gaps has not been studied comprehensively. Using a replicated full-factorial forest experiment (treatments: Gap; Gap + Deadwood; Deadwood; Control), we show that following gap creation, there is a rapid change in the true bug (Heteroptera) community structure, with an increase in species that are mainly recruited from open lands. Compared with closed-canopy treatments (Deadwood and Control), open canopy treatments (Gap and Gap + Deadwood) promoted an overall increase in species (+ 59.4%, estimated as number of species per plot) and individuals (+ 76.3%) of true bugs, mainly herbivores and species associated to herbaceous vegetation. Community composition also differed among treatments, and all 17 significant indicator species (out of 117 species in total) were associated with the open canopy treatments. Based on insect data collected in grasslands and forests over an 11-year period, we found that the species colonizing experimental gaps had greater body size and a greater preference for open vegetation. Our results indicate that animal communities that assemble following gap creation contain a high proportion of habitat generalists that not occurred in closed forests, contributing significantly to overall diversity in forest mosaics.


Assuntos
Ecossistema , Florestas , Animais , Ecologia , Plantas , Árvores
4.
J Anim Ecol ; 91(10): 2113-2124, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35978526

RESUMO

Ecosystem functioning may directly or indirectly-via change in biodiversity-respond to land use. Dung removal is an important ecosystem function central for the decomposition of mammal faeces, including secondary seed dispersal and improved soil quality. Removal usually increases with dung beetle diversity and biomass. In forests, dung removal can vary with structural variables that are, however, often interrelated, making experiments necessary to understand the role of single variables on ecosystem functions. How gaps and deadwood, two main outcomes of forest management influence dung removal, is unknown. We tested if dung removal responds to gap creation and deadwood provisioning or if treatment effects are mediated via responses of dung beetles. We expected lower removal rates in gaps due to lower dung beetle biomass and diversity. We sampled dung beetles and measured dung removal in a highly-replicated full-factorial forest experiment established at 29 sites in three regions of Germany (treatments: Gap, Gap + Deadwood, Deadwood, Control). All gaps were experimentally created and had a diameter of around 30 m. Dung beetle diversity, biomass and dung removal were each lower in gaps than in controls. Dung removal decreased from 61.9% in controls to 48.5% in gaps, irrespective of whether or not the gap had deadwood. This treatment effect was primarily driven by dung beetle biomass but not diversity. Furthermore, dung removal was reduced to 56.9% in the deadwood treatment. Our findings are not consistent with complementarity effects of different dung beetle species linked to biodiversity-ecosystem functioning relationships that have been shown in several ecosystems. In contrast, identity effects can be pronounced: gaps reduced the abundance of a large-bodied key forest species (Anoplotrupes stercorosus), without compensatory recruitment of open land species. While gaps and deadwood are important for many forest organisms, dung beetles and dung removal respond negatively. Our results exemplify how experiments can contribute to test hypotheses on the interrelation between land use, biodiversity and ecosystem functioning.


Assuntos
Besouros , Ecossistema , Animais , Biodiversidade , Besouros/fisiologia , Fezes , Florestas , Mamíferos , Solo
5.
Biol Lett ; 18(4): 20210666, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35440233

RESUMO

Temporal trends in insect numbers vary across studies and habitats, but drivers are poorly understood. Suitable long-term data are scant and biased, and interpretations of trends remain controversial. By contrast, there is substantial quantitative evidence for drivers of spatial variation. From observational and experimental studies, we have gained a profound understanding of where insect abundance and diversity is higher-and identified underlying environmental conditions, resource change and disturbances. We thus propose an increased consideration of spatial evidence in studying the causes of insect decline. This is because for most time series available today, the number of sites and thus statistical power strongly exceed the number of years studied. Comparisons across sites allow quantifying insect population risks, impacts of land use, habitat destruction, restoration or management, and stressors such as chemical and light pollution, pesticides, mowing or harvesting, climatic extremes or biological invasions. Notably, drivers may not have to change in intensity to have long-term effects on populations, e.g. annually repeated disturbances or mortality risks such as those arising from agricultural practices. Space-for-time substitution has been controversially debated. However, evidence from well-replicated spatial data can inform on urgent actions required to halt or reverse declines-to be implemented in space.


Assuntos
Biodiversidade , Insetos , Agricultura , Animais , Ecossistema
6.
Ecol Evol ; 13(4): e10000, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37091559

RESUMO

Associating morphological features with ecological traits is essential for understanding the connection between organisms and their roles in the environment. If applied successfully, functional trait approaches link form and function in an organism. However, functional trait data not associated with natural history information provide an incomplete picture of an organism's role in the ecosystem. Using data on the relative trophic position of 592 ant (Formicidae) samples comprising 393 species from 11 subfamilies and 19 widely distributed communities, we tested the extent to which commonly used functional proxies (i.e., morphometric traits) predict diet/trophic position as estimated from stable isotopes (δ15N). We chose ants as a group due to their ubiquity and abundance, as well as the wealth of available data on species traits and trophic levels. We measured 12 traits that have previously been identified as functionally significant, and corrected trait values for size and evolutionary history by using phylogenetically corrected trait residuals. Estimated trophic positions varied from 0.9 to 4.8 or roughly 4 trophic levels. Morphological data spanned nearly the entire size range seen in ants from the smallest (e.g., Strumigenys mitis total length 1.1 mm) to the largest species (e.g., Dinoponera australis total length 28.3 mm). We found overall body size, relative eye position, and scape length to be informative for predicting diet/trophic position in these communities, albeit with relatively weak predictive values. Specifically, trophic position was negatively correlated with body size and positively correlated with sensory traits (higher eye position and scape length). Our results suggest that functional trait-based approaches can be informative but should be used with caution unless clear links between form and function have been established.

7.
Commun Biol ; 6(1): 338, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016087

RESUMO

Insects are declining, but the underlying drivers and differences in responses between species are still largely unclear. Despite the importance of forests, insect trends therein have received little attention. Using 10 years of standardized data (120,996 individuals; 1,805 species) from 140 sites in Germany, we show that declines occurred in most sites and species across trophic groups. In particular, declines (quantified as the correlation between year and the respective community response) were more consistent in sites with many non-native trees or a large amount of timber harvested before the onset of sampling. Correlations at the species level depended on species' life-history. Larger species, more abundant species, and species of higher trophic level declined most, while herbivores increased. This suggests potential shifts in food webs possibly affecting ecosystem functioning. A targeted management, including promoting more natural tree species composition and partially reduced harvesting, can contribute to mitigating declines.


Assuntos
Ecossistema , Florestas , Humanos , Animais , Árvores/fisiologia , Insetos , Cadeia Alimentar
8.
Ecology ; 102(3): e03257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226643

RESUMO

Biological invasions are a leading cause of global change, yet their long-term effects remain hard to predict. Invasive species can remain abundant for long periods of time, or exhibit population crashes that allow native communities to recover. The abundance and impact of nonnative species may also be closely tied to temporally variable habitat characteristics. We investigated the long-term effects of habitat fragmentation and invasion by the Argentine ant (Linepithema humile) by resurveying ants in 40 scrub habitat fragments in coastal southern California that were originally sampled 21 yr ago. At a landscape scale, fragment area, but not fragment age or Argentine ant mean abundance, continued to explain variation in native ant species richness; the species-area relationship between the two sample years did not differ in terms of slope or intercept. At local scales, over the last 21 yr we detected increases in the overall area invaded (+36.7%, estimated as the proportion of occupied traps) and the relative abundance of the Argentine ant (+121.95%, estimated as mean number of workers in pitfall traps). Argentine ant mean abundance also increased inward from urban edges in 2017 compared to 1996. The greater level of penetration into fragments likely reduced native ant richness by eliminating refugia for native ants in fragments that did not contain sufficient interior area. At one fragment where we sampled eight times over the last 21 yr, Argentine ant mean abundance increased over time while the diversity of native ground-foraging ants declined from 14 to 4 species. Notably, native species predicted to be particularly sensitive to the combined effect of invasion and habitat loss were not detected at any sites in our recent sampling, including the army ant genus Neivamyrmex. Conversely, two introduced ant species (Brachymyrmex patagonicus and Pheidole flavens) that were undetected in 1996 are now common and widespread at our sites. Our results indicate that behaviorally and numerically dominant invasive species can maintain high densities and suppress native diversity for extended periods.


Assuntos
Formigas , Espécies Introduzidas , Animais , Ecossistema
9.
Acta biol. colomb ; 16(1): 219-224, abr. 2011.
Artigo em Espanhol | LILACS | ID: lil-635061

RESUMO

En este estudio se registran cinco especies de hormigas legionarias (Labidus coecus, Labidus coecus, Neivamyrmex punctaticeps, Cheliomyrmex andicola y Eciton dulcium) en siete usos de suelo del departamento de Caquetá. Las hormigas fueron capturadas en áreas productivas del piedemonte amazónico usando cuatro métodos de muestreo (TSBF, escrutinio de hojarasca, lavado de suelo con formol y captura directa). Se proporciona información acerca de distribución y hábitos para cada especie y se reporta por primera vez para Caquetá la presencia de C. andicola y E. dulcium. Estos muestreos son importantes para ampliar el conocimiento de la mirmecofauna del país.


Five species of army ants (Labidus coecus, Labidus coecus, Neivamyrmex punctaticeps, Cheliomyrmex andicola y Eciton dulcium) are recorded from land under seven different use regimes in Caquetá department. The ants were captured in agricultural areas of the amazonian foothills using four sampling methods (TSBF, screening of litter, formalin soil wash, and direct search). We provide information about distribution and habits for each species and report the presence of C. andicola and E. dulcium in Caquetá for the first time. These records contribute to a better knowledge of the ant fauna in Colombia.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa