Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 109(22): 8664-9, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22552227

RESUMO

Follicular T-helper (T(FH)) cells cooperate with GL7(+)CD95(+) germinal center (GC) B cells to induce antibody maturation. Herein, we identify the transcription factor IRF4 as a T-cell intrinsic precondition for T(FH) cell differentiation and GC formation. After immunization with protein or infection with the protozoon Leishmania major, draining lymph nodes (LNs) of IFN-regulatory factor-4 (Irf4(-/-)) mice lacked GCs and GC B cells despite developing normal initial hyperplasia. GCs were also absent in Peyer's patches of naive Irf4(-/-) mice. Accordingly, CD4(+) T cells within the LNs and Peyer's patches failed to express the T(FH) key transcription factor B-cell lymphoma-6 and other T(FH)-related molecules. During chronic leishmaniasis, the draining Irf4(-/-) LNs disappeared because of massive cell death. Adoptive transfer of WT CD4(+) T cells or few L. major primed WT T(FH) cells reconstituted GC formation, GC B-cell differentiation, and LN cell survival. In support of a T-cell intrinsic IRF4 activity, Irf4(-/-) T(FH) cell differentiation was not rescued by close neighborhood to transferred WT T(FH) cells. Together with its known B lineage-specific roles during plasma cell maturation and class switch, our study places IRF4 in the center of antibody production toward T-cell-dependent antigens.


Assuntos
Diferenciação Celular/imunologia , Centro Germinativo/imunologia , Fatores Reguladores de Interferon/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Transferência Adotiva , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/transplante , Sobrevivência Celular/imunologia , Feminino , Citometria de Fluxo , Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , Leishmania major/imunologia , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Plasmócitos/imunologia , Plasmócitos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/transplante
2.
Biochim Biophys Acta ; 1810(1): 2-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20682242

RESUMO

BACKGROUND: Oxidoreductases of the thioredoxin family of proteins have been thoroughly studied in numerous cellular and animal models mimicking human diseases. Despite of their well documented role in various disease conditions, no systematic information on the presence of these proteins is available. METHODS: Here, we have systematically analyzed the presence of some of the major constituents of the glutaredoxin (Grx)-, peroxiredoxin (Prx)-, and thioredoxin (Trx)-systems, i.e. Grx1, Grx2, Grx3 (TXNL-2/PICOT), Grx5, nucleoredoxin (Nrx), Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, thioredoxin reductase 1 (TrxR1), Trx2, TrxR2, and γ-glutamyl cysteine synthetase (γ-GCS) in various tissues of the mouse using immunohistochemistry. RESULTS: The identification of the Trx family proteins in the central nervous system, sensory organs, digestive system, lymphatic system, reproductive system, urinary system, respiratory system, endocrine system, skin, heart, and muscle revealed a number of significant differences between these proteins with respect to their distribution in these tissues. CONCLUSION: Our results imply more specific functions and interactions between the proteins of this family than previously assumed. GENERAL SIGNIFICANCE: Crucial functions of Trx family proteins have been demonstrated in various disease conditions. A detailed overview on their distribution in various tissues will be helpful to fully comprehend their potential role and the interactions of these proteins in the most thoroughly studied model for human diseases-the laboratory mouse. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.


Assuntos
Glutarredoxinas/metabolismo , Camundongos/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo , Animais , Atlas como Assunto , Feminino , Glutarredoxinas/genética , Glutarredoxinas/imunologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos/genética , Camundongos/imunologia , Modelos Biológicos , Oxirredução , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Gravidez , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Distribuição Tecidual
3.
J Histochem Cytochem ; 54(8): 877-88, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16517980

RESUMO

The secretory granule protein syncollin was first identified in the exocrine pancreas where a population of the protein is associated with the luminal surface of the zymogen granule membrane. In this study we provide first morphological and biochemical evidence that, in addition to its pancreatic localization, syncollin is also present in neutrophilic granulocytes of rat and human origin. By immunohistological studies, syncollin was detected in neutrophilic granulocytes of the spleen. Furthermore, syncollin is expressed by the promyelocytic HL-60 cells, where it is stored in azurophilic granules and in a vesicular compartment. These findings were confirmed by fractionation experiments and immunoelectron microscopy. Treatment with a phorbol ester triggered the release of syncollin indicating that in HL-60 cells it is a secretory protein that can be mobilized upon stimulation. A putative role for syncollin in host defense is discussed.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neutrófilos/metabolismo , Peroxidase/metabolismo , Vesículas Secretórias/metabolismo , Animais , Linhagem Celular , Células HL-60 , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Imunoeletrônica , Neutrófilos/ultraestrutura , Especificidade de Órgãos , Ratos , Ratos Wistar
4.
Free Radic Biol Med ; 51(2): 552-61, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21586322

RESUMO

The disruption of redox control, i.e., oxidative stress, is one of the most destructive causes of ischemia-reperfusion (IR) injury. Thioredoxin (Trx) family proteins play a major role in the cellular response to oxidative stress. Here, we systematically investigated the levels and tissue distribution of 15 members of this family (Trx and TrxR 1 and 2, Nrx, Prx 1-6, and Grx 1-3 and 5) in mouse kidneys after induction of IR by comparing control, clamped, and contralateral organs. After IR, levels of various redoxins were quantified. Immunohistochemical analysis revealed segment-specific alterations induced by the ischemic insult. Grx2, Prx3, and Prx6 were highly expressed in proximal tubule cells. Overexpression of these proteins in HEK293 and HeLa cells subjected to hypoxia and reoxygenation revealed higher survival and proliferation rates and lower oxidative damage compared to controls. Furthermore, we report for the first time the accumulation of Grx1 at the apical side of distal convoluted cells and the specific secretion of Grx1 into the urine after IR. The differences in both the basal equipment and the segment-specific responses of the antioxidant proteins may contribute to the distinct susceptibilities and regeneration processes of the various segments of the nephron to the IR insult.


Assuntos
Glutarredoxinas/fisiologia , Rim/irrigação sanguínea , Peroxirredoxina VI/fisiologia , Peroxirredoxinas/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/enzimologia
5.
J Cell Sci ; 121(Pt 4): 458-65, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18211959

RESUMO

Epithelial cells are characterised by distinct apical and basolateral membrane domains that are separated by tight junctions. Establishment and maintenance of this polarity depend on specific gene expression and protein targeting to their correct location. Our former studies, performed with renal epithelial MDCK cells, revealed a new function for galectin-3, a member of a conserved family of lectins. There, galectin-3 is required for intracellular sorting and correct targeting of non-raft-associated glycoproteins to the apical plasma membrane. In the present study, we found transport defects of the intestinal brush border hydrolases lactase-phlorizin hydrolase (LPH) and dipeptidylpeptidase IV (DPPIV) in galectin-3-null mutant mice. We could show that, in enterocytes of wild-type mice, both glycoproteins directly interact with galectin-3 and transit through non-raft-dependent apical transport platforms. Therefore, this genetic analysis provides definitive evidence for the involvement of galectin-3 in protein intracellular trafficking in vivo. Further investigations revealed that gal3-null enterocytes also exhibit striking cytoarchitecture defects, with the presence of numerous and regular protrusions located along basolateral membranes. Moreover, beta-actin and villin, two characteristic markers of brush borders, become abnormally distributed along these atypical basolateral membranes in gal3(-/-) mice. Taken together, our results demonstrate that, in addition to a pivotal role in apical trafficking, galectin-3 also participates in epithelial morphogenesis in mouse enterocytes.


Assuntos
Membrana Celular/metabolismo , Enterócitos/metabolismo , Galectina 3/fisiologia , Actinas/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Enterócitos/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Galectina 3/genética , Galectina 3/metabolismo , Imunoprecipitação , Lactase-Florizina Hidrolase/metabolismo , Camundongos , Camundongos Endogâmicos , Camundongos Mutantes , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Mutação
6.
Cell Tissue Res ; 315(3): 321-9, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14747941

RESUMO

Supramaximal dosage of the cholecystokinin analog caerulein leads to edematous pancreatitis with subsequent acinar cell destruction predominantly by apoptosis. We have used immunohistochemistry to reveal the expression of the anti-apoptotic protein galectin-3 in pancreatic acinar cells. Galectin-3, which occurs only in duct cells under physiological conditions, is expressed in a subset of acinar cells after the end of a 12-h caerulein infusion, giving rise to a "patchy" staining pattern. During the subsequent period of inflammation and regeneration, galectin-3 expression increases in those acinar cells that undergo apoptosis. By 48 h after the end of caerulein infusion, morphologically normal cells do not contain galectin-3 and participate in regeneration by proliferation. Tubular complexes, being transient structures from degenerative acini, accumulate galectin-3 in the remnants of the epithelium cells. Stimulation with supramaximal dosages of caerulein of the cell line AR4-2J, which is derived from rat pancreatic acinar cells, also results in a marked increase of galectin-3, confirming the in vivo results. We postulate that the high expression of the anti-apoptotic protein galectin-3 regulates the time course of the apoptotic process in pancreatic acinar cells.


Assuntos
Galectina 3/metabolismo , Pâncreas/metabolismo , Pancreatite/metabolismo , Regeneração/efeitos dos fármacos , Doença Aguda , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/metabolismo , Edema/patologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Dados de Sequência Molecular , Pâncreas/patologia , Ductos Pancreáticos/efeitos dos fármacos , Ductos Pancreáticos/metabolismo , Ductos Pancreáticos/patologia , Pancreatite/induzido quimicamente , Pancreatite/patologia , Ratos , Ratos Wistar , Regeneração/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa