Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 142(2): 203-17, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20637498

RESUMO

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Anormalidades Múltiplas/metabolismo , Dolicóis/metabolismo , Deficiência Intelectual/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Animais , Butadienos/metabolismo , Consanguinidade , Embrião de Mamíferos/metabolismo , Estudo de Associação Genômica Ampla , Glicosilação , Hemiterpenos/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Resposta a Proteínas não Dobradas
2.
N Engl J Med ; 370(6): 533-42, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499211

RESUMO

BACKGROUND: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS: Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS: Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Assuntos
Glucofosfatos/genética , Doença de Depósito de Glicogênio/genética , Fenótipo , Fosfoglucomutase/genética , Galactose/uso terapêutico , Genes Recessivos , Glucose/metabolismo , Glucofosfatos/metabolismo , Doença de Depósito de Glicogênio/dietoterapia , Doença de Depósito de Glicogênio/metabolismo , Glicoproteínas/biossíntese , Glicosilação , Humanos , Masculino , Mutação , Fosfoglucomutase/metabolismo , RNA Mensageiro/análise
3.
Hum Mol Genet ; 21(19): 4151-61, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22492991

RESUMO

Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included the sequential application of biochemical methods in blood samples and fibroblasts. In genetically unsolved cases, homozygosity mapping has been applied in consanguineous families. Altogether, this time-consuming diagnostic strategy led to the identification of defects in 17 different CDG-I genes. Here, we applied whole-exome sequencing (WES) in combination with the knowledge of the protein N-glycosylation pathway for gene identification in our remaining group of six unsolved CDG-I patients from unrelated non-consanguineous families. Exome variants were prioritized based on a list of 76 potential CDG-I candidate genes, leading to the rapid identification of one known and two novel CDG-I gene defects. These included the first X-linked CDG-I due to a de novo mutation in ALG13, and compound heterozygous mutations in DPAGT1, together the first two steps in dolichol-PP-glycan assembly, and mutations in PGM1 in two cases, involved in nucleotide sugar biosynthesis. The pathogenicity of the mutations was confirmed by showing the deficient activity of the corresponding enzymes in patient fibroblasts. Combined with these results, the gene defect has been identified in 98% of our CDG-I patients. Our results implicate the potential of WES to unravel disease genes in the CDG-I in newly diagnosed singleton families.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Exoma , Genoma Humano , Análise de Sequência de DNA , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Glicosilação , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Proteínas/genética , Proteínas/metabolismo , Adulto Jovem
4.
Am J Med Genet A ; 161A(3): 578-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23401092

RESUMO

Congenital disorders of glycosylation (CDG) are a rapidly growing family of inborn errors. Screening for CDG in suspected cases is usually performed in the first year of life by serum transferrin isoelectric focusing or mass spectrometry. Based on the transferrin analysis patients can be biochemically diagnosed with a type 1 or type 2 transferrin pattern, and labeled as CDG-I, or CDG-II. The diagnosis of CDG is frequently delayed due to the highly variable phenotype, some cases showing single organ involvement and others mimicking syndromes, like skeletal dysplasia, cutis laxa syndrome, or congenital muscle dystrophy. The aim of our study was to evaluate perinatal abnormalities and early discriminative symptoms in 58 patients consecutively diagnosed with diverse CDG-subtypes. Neonatal findings and clinical features in the first months of life were studied in 36 children with CDG-I and 22 with CDG-II. Maternal complications were found in five, small for gestational age in nine patients. Five children had abnormal neonatal screening results for hypothyroidism. Congenital microcephaly and neonatal seizures were common in CDG-II. Inverted nipples were uncommon with 5 out of 58 children. Dysmorphic features were mostly nonspecific, except for cutis laxa. Early complications included feeding problems, cardiomyopathy, thrombosis, and bleeding. Cases presenting in the neonatal period had the highest mortality rate. Survival in CDG patients is highly dependent on early intervention therapy. We recommend low threshold screening for glycosylation disorders in infants with neurologic symptoms, even in the absence of abnormal fat distribution. Growth retardation and neonatal bleeding increase suspicion for CDG.


Assuntos
Anormalidades Múltiplas/genética , Defeitos Congênitos da Glicosilação/genética , Convulsões/genética , Anormalidades Múltiplas/mortalidade , Defeitos Congênitos da Glicosilação/mortalidade , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Mutação , Gravidez , Complicações na Gravidez/genética , Convulsões/mortalidade
5.
Hum Mol Genet ; 18(12): 2149-65, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19321599

RESUMO

Autosomal recessive cutis laxa type 2 (ARCL2), a syndrome of growth and developmental delay and redundant, inelastic skin, is caused by mutations in the a2 subunit of the vesicular ATPase H+-pump (ATP6V0A2). The goal of this study was to define the disease mechanisms that lead to connective tissue lesions in ARCL2. In a new cohort of 17 patients, DNA sequencing of ATP6V0A2 detected either homozygous or compound heterozygous mutations. Considerable allelic and phenotypic heterogeneity was observed, with a missense mutation of a moderately conserved residue p.P87L leading to unusually mild disease. Abnormal N- and/or mucin type O-glycosylation was observed in all patients tested. Premature stop codon mutations led to decreased ATP6V0A2 mRNA levels by destabilizing the mutant mRNA via the nonsense-mediated decay pathway. Loss of ATP6V0A2 either by siRNA knockdown or in ARCL2 cells resulted in distended Golgi cisternae, accumulation of abnormal lysosomes and multivesicular bodies. Immunostaining of ARCL2 cells showed the accumulation of tropoelastin (TE) in the Golgi and in large, abnormal intracellular and extracellular aggregates. Pulse-chase studies confirmed impaired secretion and increased intracellular retention of TE, and insoluble elastin assays showed significantly reduced extracellular deposition of mature elastin. Fibrillin-1 microfibril assembly and secreted lysyl oxidase activity were normal in ARCL2 cells. TUNEL staining demonstrated increased rates of apoptosis in ARCL2 cell cultures. We conclude that loss-of-function mutations in ATP6V0A2 lead to TE aggregation in the Golgi, impaired clearance of TE aggregates and increased apoptosis of elastogenic cells.


Assuntos
Cútis Laxa/metabolismo , Cútis Laxa/fisiopatologia , Vesículas Citoplasmáticas/metabolismo , Mutação , ATPases Translocadoras de Prótons/metabolismo , Tropoelastina/metabolismo , Sequência de Aminoácidos , Apoptose , Sobrevivência Celular , Células Cultivadas , Pré-Escolar , Estudos de Coortes , Cútis Laxa/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Transporte Proteico , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética
6.
Clin Chem ; 57(4): 593-602, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21273509

RESUMO

BACKGROUND: Determination of the genetic defect in patients with a congenital disorder of glycosylation (CDG) is challenging because of the wide clinical presentation, the large number of gene products involved, and the occurrence of secondary causes of underglycosylation. Transferrin isoelectric focusing has been the method of choice for CDG screening; however, improved methods are required for the molecular diagnosis of patients with CDG type II. METHODS: Plasma samples with a typical transferrin isofocusing profile were analyzed. N-glycans were released from these samples by PNGase F [peptide-N4-(acetyl-ß-glucosaminyl)-asparagine amidase] digestion, permethylated and purified, and measured on a MALDI linear ion trap mass spectrometer. A set of 38 glycans was used for quantitative comparison and to establish reference intervals for such glycan features as the number of antennae, the level of truncation, and fucosylation. Plasma N-glycans from control individuals, patients with known CDG type II defects, and patients with a secondary cause of underglycosylation were analyzed. RESULTS: CDGs due to mannosyl (α-1,6-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (MGAT2), ß-1,4-galactosyltransferase 1 (B4GALT1), and SLC35C1 (a GDP-fucose transporter) defects could be diagnosed directly from the N-glycan profile. CDGs due to defects in proteins involved in Golgi trafficking, such as subunit 7 of the conserved oligomeric Golgi complex (COG7) and subunit V0 a2 of the lysosomal H(+)-transporting ATPase (ATP6V0A2) caused a loss of triantennary N-glycans and an increase of truncated structures. Secondary causes with liver involvement were characterized by increased fucosylation, whereas the presence of plasma sialidase produced isolated undersialylation. CONCLUSIONS: MALDI ion trap analysis of plasma N-glycans documents features that discriminate between primary and secondary causes of underglycosylation and should be applied as the first step in the diagnostic track of all patients with an unsolved CDG type II.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Polissacarídeos/sangue , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Estudos de Casos e Controles , Defeitos Congênitos da Glicosilação/sangue , Humanos , Recém-Nascido , Triagem Neonatal
7.
Brain ; 133(11): 3210-20, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20852264

RESUMO

Cerebellar hypoplasia and slowly progressive ophthalmological symptoms are common features in patients with congenital disorders of glycosylation type I. In a group of patients with congenital disorders of glycosylation type I with unknown aetiology, we have previously described a distinct phenotype with severe, early visual impairment and variable eye malformations, including optic nerve hypoplasia, retinal coloboma, congenital cataract and glaucoma. Some of the symptoms overlapped with the phenotype in other congenital disorders of glycosylation type I subtypes, such as vermis hypoplasia, anaemia, ichtyosiform dermatitis, liver dysfunction and coagulation abnormalities. We recently identified pathogenic mutations in the SRD5A3 gene, encoding steroid 5α-reductase type 3, in a group of patients who presented with this particular phenotype and a common metabolic pattern. Here, we report on the clinical, genetic and metabolic features of 12 patients from nine families with cerebellar ataxia and congenital eye malformations diagnosed with SRD5A3-congenital disorders of glycosylation due to steroid 5α-reductase type 3 defect. This enzyme is necessary for the reduction of polyprenol to dolichol, the lipid anchor for N-glycosylation in the endoplasmic reticulum. Dolichol synthesis is an essential metabolic step in protein glycosylation. The current defect leads to a severely abnormal glycosylation state already in the early phase of the N-glycan biosynthesis pathway in the endoplasmic reticulum. We detected high expression of SRD5A3 in foetal brain tissue, especially in the cerebellum, consistent with the finding of the congenital cerebellar malformations. Based on the overlapping clinical, biochemical and genetic data in this large group of patients with congenital disorders of glycosylation, we define a novel syndrome of cerebellar ataxia associated with congenital eye malformations due to a defect in dolichol metabolism.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Doenças Cerebelares/genética , Doenças Cerebelares/metabolismo , Dolicóis/metabolismo , Oftalmopatias/genética , Oftalmopatias/metabolismo , Glicosilação , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Doenças Cerebelares/complicações , Criança , Pré-Escolar , Oftalmopatias/complicações , Feminino , Homozigoto , Humanos , Lactente , Masculino , Repetições de Microssatélites/genética , Mutação/genética , Síndrome
8.
Proteomics ; 8(18): 3822-32, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18712764

RESUMO

This study applied yolk immunoglobulins immunoaffinity separation and MALDI-TOF MS for clinical proteomics of congenital disorders of glycosylation (CDG) and secondary glycosylation disorders [galactosemia and hereditary fructose intolerance (HFI)]. Serum transferrin (Tf) and alpha1-antitrypsin (AAT) that are markers for CDG, were purified sequentially to obtain high-quality MALDI mass spectra to differentiate single glycoforms of the native intact glycoproteins. The procedure was found feasible for the investigation of protein macroheterogeneity due to glycosylation site underoccupancy then ensuing the characterization of patients with CDG group I (N-glycan assembly disorders). Following PNGase F digestion of the purified glycoprotein, the characterization of protein microheterogeneity by N-glycan MS analysis was performed in a patient with CDG group II (processing disorders). CDG-Ia patients showed a typical profile of underglycosylation where the fully glycosylated glycoforms are always the most abundant present in plasma with lesser amounts of partially and unglycosylated glycoforms in this order. Galactosemia and HFI are potentially fatal diseases, which benefit from early diagnosis and prompt therapeutic intervention. In symptomatic patients with galactosemia and in those with HFI, MALDI MS of Tf and AAT depicts a hypoglycosylation profile with a significant increase of underglycosylated glycoforms that reverses by dietary treatment, representing a clue for diagnosis and treatment monitoring.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Proteínas do Ovo/metabolismo , Glicoproteínas/metabolismo , Imunoglobulinas/metabolismo , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Galactosemias/metabolismo , Glicosilação , Humanos , Masculino , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Adulto Jovem
9.
Mol Genet Metab ; 94(4): 481-484, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18571450

RESUMO

The association of fetal hydrops with Congenital Disorders of Glycosylation (CDG) has been reported previously. Pericardial fluid accumulation and ascites were also observed in a few young patients with CDG type Ia. Here we describe the clinical and biochemical features in three children developing life-threatening extravascular fluid accumulation. All patients carried severe PMM2 mutations comparable to the earlier reported patients with fetal hydrops. One patient was successfully treated with a pericardial-pleural shunt placement. Pericardial fluid accumulation and generalized oedema resolved temporarily in the other two children on regular albumin infusions and the use of diuretics. Sequential abdominal punctures were unsuccessful in the treatment of the extensive ascites production. The use of non-steroid anti-inflammatory agents and the application of high dose steroids had no clinical effect. Severe extravascular fluid accumulation progressed to decompensation and death. Biochemical investigations of the abdominal fluid and pericardial fluid demonstrated a high extracellular protein concentration, increased cytokine concentrations and an abnormal transferrin isoelectric focusing pattern characteristic of CDG type I. Our results are consistent with a local activation of the cytokine pathways and subsequent protein transport through the endothelial surface to the extravascular space. Normal glycosylation of cell surface proteins is essential for the normal fluid balance and protein transport through the pericardial and peritoneal membrane. Future therapeutic efforts should be directed to inhibit the abnormal immune response and excessive protein transport in this life-threatening complication of CDG syndrome.


Assuntos
Líquido Ascítico/metabolismo , Erros Inatos do Metabolismo/metabolismo , Derrame Pericárdico/metabolismo , Líquido Ascítico/química , Citocinas/imunologia , Evolução Fatal , Feminino , Glicosilação , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/imunologia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Derrame Pericárdico/terapia , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Transferrina/metabolismo
10.
Nat Commun ; 7: 11600, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27231034

RESUMO

The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function.


Assuntos
Disfunção Cognitiva/genética , Síndromes de Imunodeficiência/genética , Hepatopatias/genética , Mutação de Sentido Incorreto , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Criança , Pré-Escolar , Disfunção Cognitiva/metabolismo , Saúde da Família , Glicosilação , Humanos , Síndromes de Imunodeficiência/metabolismo , Lactente , Hepatopatias/metabolismo , Masculino , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/deficiência , Adulto Jovem
12.
Clin Res Hepatol Gastroenterol ; 38(4): 403-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24972800

RESUMO

Pediatric hepatology appears to be a very specific field of paediatrics which deals mainly with rare diseases although clinical features can be commonly found - like increased activity of transaminases. Some of these rare diseases like Wilson disease are commonly looked for and recently Wilsonian like phenotypes have been described which additionally presented with abnormal glycosylation of the plasma protein transferrin. In a subgroup of those patients with specific additional clinical symptoms (cleft uvula, low blood sugar, rhabdomyolysis and dilated cardiomyopathy) phosphoglucomutase 1 deficiency was identified. We recommend screening for abnormal glycosylation of the plasma protein transferrin in children with unexplained liver injury.


Assuntos
Degeneração Hepatolenticular/diagnóstico , Doenças Metabólicas/diagnóstico , Doenças Raras/diagnóstico , Diagnóstico Diferencial , Glicosilação , Humanos , Hepatopatias/diagnóstico
13.
Pediatrics ; 130(4): e1034-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22966035

RESUMO

Deficiency of ß-1,4 mannosyltransferase (MT-1) congenital disorder of glycosylation (CDG), due to ALG1 gene mutations. Features in 9 patients reported previously consisted of prenatal growth retardation, pregnancy-induced maternal hypertension and fetal hydrops. Four patients died before 5 years of age, and survivors showed a severe psychomotor retardation. We report on 7 patients with psychomotor delay, microcephaly, strabismus and coagulation abnormalities, seizures and abnormal fat distribution. Four children had a stable clinical course, two had visual impairment, and 1 had hearing loss. Thrombotic and vascular events led to deterioration of the clinical outcome in 2 patients. Four novel ALG1 mutations were identified. Pathogenicity was determined in alg1 yeast mutants transformed with hALG1. Functional analyses showed all novel mutations representing hypomorphs associated with residual enzyme activity. We extend the phenotypic spectrum including the first description of deafness in MT1 deficiency, and report on mildly affected patients, surviving to adulthood. The dysmorphic features, including abnormal fat distribution and strabismus highly resemble CDG due to phosphomannomutase-2 deficiency (PMM2-CDG), the most common type of CDG. We suggest testing for ALG1 mutations in unsolved CDG patients with a type 1 transferrin isoelectric focusing pattern, especially with epilepsy, severe visual loss and hemorrhagic/thrombotic events.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico , Evolução Fatal , Feminino , Marcadores Genéticos , Humanos , Lactente , Masculino , Manosiltransferases/deficiência , Mutação , Fenótipo , Adulto Jovem
14.
J Child Neurol ; 24(1): 13-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19168813

RESUMO

Congenital disorders of glycosylation are a heterogeneous group of disorders with multisystemic involvement. The most common form is phosphomannomutase deficiency or congenital disorders of glycosylation type Ia with an autosomal recessive inheritance and incidence estimated at 1/20000-1/50000 live born. Congenital disorders of glycosylation Ia can manifest as severe multisystemic disease of infancy or milder disorder with only neurological problems including ataxia, hypotonia, and psychomotor retardation. The brain pathological findings in congenital disorders of glycosylation type Ia patients corroborate with cerebellar dysfunction. Usually the most affected part is the anterior lobe of the vermis. Microscopic analysis demonstrates the prominent Purkinje cell loss and subtotal loss of the external and internal granule cell layers. The authors present clinical and pathological picture of a 4-month-old girl with congenital disorders of glycosylation type Ia, additionally complicated by congenital cytomegalovirus infection. The diagnosis was confirmed by low phosphomannomutase activity in patient's fibroblasts and mutations on both alleles of phosphomannomutase 2 gene.


Assuntos
Defeitos Congênitos da Glicosilação/complicações , Infecções por Citomegalovirus/complicações , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Feminino , Glicosilação , Humanos , Lactente , Fosfotransferases (Fosfomutases)
15.
Pediatr Res ; 62(1): 101-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17515832

RESUMO

Abnormalities in protein glycosylation are reported in fructosemia (HFI) and galactosemia, although, particularly in HFI, the published data are limited to single cases. The purpose was to investigate the usefulness of the carbohydrate-deficient transferrin (CDT) profile for identification and monitoring of these disorders. First we analyzed CDT values before and shortly after the diagnosis in 10 cases of HFI and 17 cases of galactosemia. In all patients, elevated CDT levels were found that significantly (p < 0.0001) decreased with the therapeutic diet (27.3 +/- 11.5% versus 9.3 +/- 5.1% for HFI and 43.8 +/- 14.1% versus 11.2 +/- 4.0% for galactosemia). To evaluate the use of CDT test in monitoring compliance, the test was performed in 25 HFI patients on fructose-restricted diet. We found an elevated CDT level on 104 from 134 tests (mean 11.3 +/- 5.5%, control 1.5%-6.2%). The fructose intake was found to be 90 +/- 70 mg/kg/d, and the diet was unbalanced. A number of patients presented lower height, elevated urinary uric acid excretion, and hypercalciuria. In conclusion, abnormal percentage of CDT (%CDT) values may allow prompt detection of HFI (or galactosemia). Persistence of some abnormalities in HFI on treatment may be caused by trace amounts of fructose ingestion and/or a deficient diet. Regular %CDT measurements are suggested for HFI treatment monitoring.


Assuntos
Dietoterapia , Intolerância à Frutose , Galactosemias , Transferrina/análogos & derivados , Biomarcadores/metabolismo , Criança , Pré-Escolar , Carboidratos da Dieta/metabolismo , Feminino , Intolerância à Frutose/diagnóstico , Intolerância à Frutose/genética , Intolerância à Frutose/metabolismo , Intolerância à Frutose/terapia , Galactosemias/diagnóstico , Galactosemias/genética , Galactosemias/metabolismo , Galactosemias/terapia , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , Transferrina/genética , Transferrina/metabolismo
16.
Mol Genet Metab ; 90(4): 408-13, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17307006

RESUMO

Congenital disorders of glycosylation type Ia (CDG-Ia) is a recessive metabolic disorder caused by mutations in the PMM2 gene and characterized by a defect in the synthesis of N-glycans. The clinical presentation ranges from very severe multi-organ failure to mild neurological problems. A plethora of PMM2 mutations has been described and the vast majority are missense mutations. This selection reflects the requirement of a minimal phosphomannomutase activity to be compatible with life. We describe the characterization of two unusual truncating mutations in two CDG-Ia patients. The first patient is compound heterozygous for the PMM2 mutation p.V231M (c.691G>A) and a deep intronic point mutation (c.639-15.479C>T). The latter variant activates a cryptic splice site which results in an in-frame insertion of a pseudoexon of 123 bp between exon 7 and 8. The second patient is compound heterozygous for the mutation p.V44A (c.131T>C) and an Alu retrotransposition mediated complex deletion of approximately 28 kb encompassing exon 8. These types of mutations have not been described before in CDG-Ia patients. Their detection stresses the importance to combine PMM2 mutation screening on genomic DNA with analysis of the transcripts and/or with the enzymatic analysis of the phosphomannomutase activity. Next to the exonic deletions, which already receive more attention than before, it is likely that deep intronic mutations represent an increasingly important category of mutations.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Pré-Escolar , Feminino , Predisposição Genética para Doença , Glicosilação , Humanos , Lactente , Íntrons , Masculino , Deleção de Sequência
17.
Glycobiology ; 15(12): 1312-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16037491

RESUMO

Defects in the biosynthesis of N- and core 1 O-glycans may be found by isoelectric focusing (IEF) of plasma transferrin and apolipoprotein C-III (apoC-III). We hypothesized that IEF of transferrin and apoC-III in combination with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of apoC-III may provide a classification for congenital disorders of glycosylation (CDG) patients. We analyzed plasma from 22 patients with eight different and well-characterized CDG subtypes and 19 cases with unsolved CDG. Transferrin IEF (TIEF) has been used to distinguish between N-glycan assembly (type 1 profile) and processing (type 2 profile) defects. We differentiated two different CDG type 2 TIEF profiles: The "asialo profile" characterized by elevated levels of asialo- and monosialotransferrin and the "disialo profile" characterized by increased levels of disialo- and trisialotransferrin. ApoC-III IEF gave two abnormal profiles ("apoC-III(0)" and "apoC-III(1)" profiles). The results for the eight established CDG forms exactly matched the theoretical expectations, providing a validation for the study approach. The combination of the three electrophoretic techniques was not additionally informative for the CDG-Ix patients as they had normal apoC-III IEF patterns. However, the CDG-IIx patients could be further subdivided into six biochemical subgroups. The robustness of the methodology was supported by the fact that three patients with similar clinical features ended in the same subgroup and that another patient, classified in the "CDG-IIe subgroup," turned out to have a similar defect. Dividing the CDG-IIx patients in six subgroups narrows down drastically the options of the primary defect in each of the subgroups and will be helpful to define new CDG type II defects.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Apolipoproteína C-III , Apolipoproteínas C/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Densitometria , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/química , Glicosilação , Humanos , Focalização Isoelétrica , Ácido N-Acetilneuramínico/química , Neuraminidase/química , Neuraminidase/metabolismo , Oligossacarídeos/química , Polissacarídeos/química , Isoformas de Proteínas , Transferrina/biossíntese , Transferrina/metabolismo
18.
Mol Genet Metab ; 79(3): 149-59, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12855219

RESUMO

Five cases of glycerol kinase deficiency are presented with clinical, biochemical, and genetic results. Two had the glycerol kinase deficiency as part of an Xp21 contiguous gene deletion syndrome-complex form-and three had an isolated form of the enzyme deficiency. In these we found two splice site mutations (IVS1+4A>G, IVS9-1G>T) and one insertion (1393_1394insG). In patients with the complex form, a deletion of the DAX1, GK genes and the distal part of the DMD gene was found. A computerized study was performed to predict the effects of the splice site mutations. It showed that the IVS9-1G>T mutation substantially altered and removed the wild-type site and enhanced a cryptic site seven nucleotides downstream, and that the IVS1+4A>G diminished the strength of the wild-type donor site from strong to leaky. To verify these predictions, we developed an RT-PCR system with gene-specific primers that exclusively amplifies the Xp21 glycerol kinase gene transcript. Identification of individuals at risk is motivated by a need to avoid delay in a correct diagnosis. For reliable identification of heterozygotes for isolated glycerol kinase deficiency, knowledge of the specific mutation in the proband is required. This is easily obtained with the RT-PCR analyses developed in this study.


Assuntos
Análise Mutacional de DNA , Glicerol Quinase , Glicerol Quinase/genética , Insuficiência Adrenal/genética , Cromossomos Humanos X , Receptor Nuclear Órfão DAX-1 , Primers do DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Deleção de Genes , Glicerol/sangue , Glicerol/urina , Glicerol Quinase/química , Glicerol Quinase/deficiência , Humanos , Recém-Nascido , Masculino , Dados de Sequência Molecular , Distrofia Muscular de Duchenne/genética , Mutação , Polônia , Polimorfismo Conformacional de Fita Simples , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores do Ácido Retinoico/química , Receptores do Ácido Retinoico/deficiência , Receptores do Ácido Retinoico/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa