Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Cell ; 74(5): 1069-1085.e11, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000436

RESUMO

Orderly segregation of chromosomes during meiosis requires that crossovers form between homologous chromosomes by recombination. Programmed DNA double-strand breaks (DSBs) initiate meiotic recombination. We identify ANKRD31 as a key component of complexes of DSB-promoting proteins that assemble on meiotic chromosome axes. Genome-wide, ANKRD31 deficiency causes delayed recombination initiation. In addition, loss of ANKRD31 alters DSB distribution because of reduced selectivity for sites that normally attract DSBs. Strikingly, ANKRD31 deficiency also abolishes uniquely high rates of recombination that normally characterize pseudoautosomal regions (PARs) of X and Y chromosomes. Consequently, sex chromosomes do not form crossovers, leading to chromosome segregation failure in ANKRD31-deficient spermatocytes. These defects co-occur with a genome-wide delay in assembling DSB-promoting proteins on autosome axes and loss of a specialized PAR-axis domain that is highly enriched for DSB-promoting proteins in wild type. Thus, we propose a model for spatiotemporal patterning of recombination by ANKRD31-dependent control of axis-associated DSB-promoting proteins.


Assuntos
Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Meiose/genética , Animais , Proteínas de Transporte/química , Segregação de Cromossomos/genética , Masculino , Camundongos , Regiões Pseudoautossômicas/genética , Espermatócitos/crescimento & desenvolvimento , Espermatócitos/metabolismo , Cromossomo X/genética , Cromossomo Y/genética
2.
Annu Rev Genomics Hum Genet ; 24: 35-61, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37159901

RESUMO

In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.


Assuntos
Infertilidade , Complexo Sinaptonêmico , Masculino , Feminino , Humanos , Camundongos , Animais , Complexo Sinaptonêmico/genética , Pareamento Cromossômico , Meiose/genética , Infertilidade/genética , Mutação , Mamíferos/genética
4.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30988016

RESUMO

The rate of RNA polymerase II (RNAPII) elongation has an important role in the control of alternative splicing (AS); however, the in vivo consequences of an altered elongation rate are unknown. Here, we generated mouse embryonic stem cells (ESCs) knocked in for a slow elongating form of RNAPII We show that a reduced transcriptional elongation rate results in early embryonic lethality in mice. Focusing on neuronal differentiation as a model, we observed that slow elongation impairs development of the neural lineage from ESCs, which is accompanied by changes in AS and in gene expression along this pathway. In particular, we found a crucial role for RNAPII elongation rate in transcription and splicing of long neuronal genes involved in synapse signaling. The impact of the kinetic coupling of RNAPII elongation rate with AS is greater in ESC-differentiated neurons than in pluripotent cells. Our results demonstrate the requirement for an appropriate transcriptional elongation rate to ensure proper gene expression and to regulate AS during development.


Assuntos
Processamento Alternativo , Células-Tronco Embrionárias/patologia , Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Células-Tronco Neurais/patologia
5.
PLoS Biol ; 18(12): e3001030, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320856

RESUMO

With the ongoing COVID-19 (Coronavirus Disease 2019) pandemic, caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), there is a need for sensitive, specific, and affordable diagnostic tests to identify infected individuals, not all of whom are symptomatic. The most sensitive test involves the detection of viral RNA using RT-qPCR (quantitative reverse transcription PCR), with many commercial kits now available for this purpose. However, these are expensive, and supply of such kits in sufficient numbers cannot always be guaranteed. We therefore developed a multiplex assay using well-established SARS-CoV-2 targets alongside a human cellular control (RPP30) and a viral spike-in control (Phocine Herpes Virus 1 [PhHV-1]), which monitor sample quality and nucleic acid extraction efficiency, respectively. Here, we establish that this test performs as well as widely used commercial assays, but at substantially reduced cost. Furthermore, we demonstrate >1,000-fold variability in material routinely collected by combined nose and throat swabbing and establish a statistically significant correlation between the detected level of human and SARS-CoV-2 nucleic acids. The inclusion of the human control probe in our assay therefore provides a quantitative measure of sample quality that could help reduce false-negative rates. We demonstrate the feasibility of establishing a robust RT-qPCR assay at approximately 10% of the cost of equivalent commercial assays, which could benefit low-resource environments and make high-volume testing affordable.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/economia , Humanos , Reação em Cadeia da Polimerase Multiplex/economia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/economia , SARS-CoV-2/genética
6.
Genes Dev ; 29(18): 1897-902, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26385961

RESUMO

Polycomb-repressive complex 1 (PRC1) and PRC2 maintain repression at many developmental genes in mouse embryonic stem cells and are required for early development. However, it is still unclear how they are targeted and how they function. We show that the ability of RING1B, a core component of PRC1, to ubiquitinate histone H2A is dispensable for early mouse embryonic development and much of the gene repression activity of PRC1. Our data support a model in which PRC1 and PRC2 reinforce each other's binding but suggest that the key functions of PRC1 lie beyond the enzymatic capabilities of RING1B.


Assuntos
Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/enzimologia , Mutação , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
Nucleic Acids Res ; 48(14): 7748-7766, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32585002

RESUMO

Mouse embryonic stem cells (mESCs) cultured with MEK/ERK and GSK3ß (2i) inhibitors transition to ground state pluripotency. Gene expression changes, redistribution of histone H3K27me3 profiles and global DNA hypomethylation are hallmarks of 2i exposure, but it is unclear whether epigenetic alterations are required to achieve and maintain ground state or occur as an outcome of 2i signal induced changes. Here we show that ESCs with three epitypes, WT, constitutively methylated, or hypomethylated, all undergo comparable morphological, protein expression and transcriptome changes independently of global alterations of DNA methylation levels or changes in H3K27me3 profiles. Dazl and Fkbp6 expression are induced by 2i in all three epitypes, despite exhibiting hypermethylated promoters in constitutively methylated ESCs. We identify a number of activated gene promoters that undergo 2i dependent loss of H3K27me3 in all three epitypes, however genetic and pharmaceutical inhibition experiments show that H3K27me3 is not required for their silencing in non-2i conditions. By separating and defining their contributions, our data suggest that repressive epigenetic systems play minor roles in mESC self-renewal and naïve ground state establishment by core sets of dominant pluripotency associated transcription factor networks, which operate independently from these epigenetic processes.


Assuntos
Repressão Epigenética , Redes Reguladoras de Genes , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Células Cultivadas , Metilação de DNA , Epigênese Genética , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Histonas/metabolismo , Masculino , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Mol Cell ; 49(5): 858-71, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23333305

RESUMO

The appropriate execution of DNA double-strand break (DSB) repair is critical for genome stability and tumor avoidance. 53BP1 and BRCA1 directly influence DSB repair pathway choice by regulating 5' end resection, but how this is achieved remains uncertain. Here we report that Rif1(-/-) mice are severely compromised for 53BP1-dependent class switch recombination (CSR) and fusion of dysfunctional telomeres. The inappropriate accumulation of RIF1 at DSBs in S phase is antagonized by BRCA1, and deletion of Rif1 suppresses toxic nonhomologous end joining (NHEJ) induced by PARP inhibition in Brca1-deficient cells. Mechanistically, RIF1 is recruited to DSBs via the N-terminal phospho-SQ/TQ domain of 53BP1, and DSBs generated by ionizing radiation or during CSR are hyperresected in the absence of RIF1. Thus, RIF1 and 53BP1 cooperate to block DSB resection to promote NHEJ in G1, which is antagonized by BRCA1 in S phase to ensure a switch of DSB repair mode to homologous recombination.


Assuntos
Proteínas Cromossômicas não Histona/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , DNA/metabolismo , Proteínas de Ligação a Telômeros/genética , Animais , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Camundongos , Recombinação Genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Transfecção , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
9.
FASEB J ; 33(12): 14221-14233, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659914

RESUMO

Deleted in azoospermia-like (DAZL) is a germ cell RNA-binding protein that is essential for entry and progression through meiosis. The phenotype of the Dazl knockout mouse has extensive germ cell loss because of incomplete meiosis. We have created a Dazl hypomorph model using short interfering RNA knockdown in mouse fetal ovary cultures, allowing investigation of Dazl function in germ cell maturation. Dazl hypomorph ovaries had a phenotype of impaired germ cell nest breakdown with a 66% reduction in total follicle number and an increase in the proportion of primordial follicles (PMFs), with smaller oocytes within these follicles. There was no significant early germ cell loss or meiotic delay. Immunostaining of intercellular bridge component testis-expressed protein (Tex)14 showed ∼59% reduction in foci number and size, without any change in Tex14 mRNA levels. TEX14 expression was also confirmed in the human fetal ovary across gestation. Using 3'UTR-luciferase reporter assays, translational regulation of TEX14 was demonstrated to be DAZL-dependant. Dazl is therefore essential for normal intercellular bridges within germ cell nests and their timely breakdown, with a major impact on subsequent assembly of PMFs.-Rosario, R., Crichton, J. H., Stewart, H. L., Childs, A. J., Adams, I. R., Anderson, R. A. Dazl determines primordial follicle formation through the translational regulation of Tex14.


Assuntos
Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Clonagem Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Meiose/fisiologia , Camundongos , Interferência de RNA , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética
10.
Biochem J ; 476(15): 2141-2156, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383821

RESUMO

The spatial configuration of chromatin is fundamental to ensure any given cell can fulfil its functional duties, from gene expression to specialised cellular division. Significant technological innovations have facilitated further insights into the structure, function and regulation of three-dimensional chromatin organisation. To date, the vast majority of investigations into chromatin organisation have been conducted in interphase and mitotic cells leaving meiotic chromatin relatively unexplored. In combination, cytological and genome-wide contact frequency analyses in mammalian germ cells have recently demonstrated that large-scale chromatin structures in meiotic prophase I are reminiscent of the sequential loop arrays found in mitotic cells, although interphase-like segmentation of transcriptionally active and inactive regions are also evident along the length of chromosomes. Here, we discuss the similarities and differences of such large-scale chromatin architecture, between interphase, mitotic and meiotic cells, as well as their functional relevance and the proposed modulatory mechanisms which underlie them.


Assuntos
Cromatina/metabolismo , Células Germinativas/metabolismo , Interfase/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Animais , Células Germinativas/citologia , Humanos
11.
PLoS Genet ; 13(7): e1006904, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708824

RESUMO

Meiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that the mammal-specific gene Tex19.1 promotes Spo11-dependent recombination in mouse spermatocytes. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for normal levels of early Spo11-dependent recombination foci during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, phenocopy the Tex19.1-/- recombination defects. These data suggest that Tex19.1 and Ubr2 are required for mouse spermatocytes to accumulate sufficient Spo11-dependent recombination to ensure that the homology search is consistently successful, and reveal a hitherto unknown genetic pathway promoting meiotic recombination in mammals.


Assuntos
Endodesoxirribonucleases/metabolismo , Meiose/genética , Proteínas Nucleares/metabolismo , Espermatócitos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Pareamento Cromossômico , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Endodesoxirribonucleases/genética , Masculino , Prófase Meiótica I/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA , Recombinação Genética , Ubiquitina-Proteína Ligases/genética
12.
Chromosoma ; 127(4): 437-459, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29907896

RESUMO

Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1-/-. The appearance of early recombination foci is delayed in Tex19.1-/- spermatocytes during leptotene/zygotene, but some Tex19.1-/- spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1-/- spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1-/- testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.


Assuntos
Proteínas Nucleares/genética , Estágio Paquíteno/genética , Recombinação Genética , Espermatócitos/citologia , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Pareamento Cromossômico/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Meiose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional/genética , Proteínas de Ligação a RNA , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/patologia , Espermatócitos/fisiologia
13.
Development ; 143(22): 4101-4114, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27875251

RESUMO

Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that have a significant impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and discuss how the somatic activity of TEs can influence gene regulatory networks.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Crescimento e Desenvolvimento/genética , Mamíferos/crescimento & desenvolvimento , Animais , Evolução Molecular , Redes Reguladoras de Genes , Variação Genética , Humanos , Mamíferos/embriologia
14.
Semin Cell Dev Biol ; 45: 68-76, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26454098

RESUMO

Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes' prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes.


Assuntos
Meiose , Oócitos/fisiologia , Trissomia , Animais , Segregação de Cromossomos , Troca Genética , Feminino , Humanos , Oogênese , Recombinação Genética
15.
Mol Hum Reprod ; 23(3): 177-186, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364521

RESUMO

Study question: Can novel meiotic RNA targets of DAZL (deleted in azoospermia-like) be identified in the human foetal ovary? Summary answer: SYCP1 (synaptonemal complex protein-1), TEX11 (testis expressed 11) and SMC1B (structural maintenance of chromosomes 1B) are novel DAZL targets in the human foetal ovary, thus DAZL may have previously unrecognised roles in the translational regulation of RNAs involved in chromosome cohesion and DNA recombination in the oocyte from the time of initiation of meiosis. What is known already: The phenotype of Dazl deficiency in mouse is infertility in both sexes and DAZL has also been linked to infertility in humans. Few studies have explored targets of this RNA-binding protein. The majority of these investigations have been carried out in mouse, and have focussed on the male thus the basis for its central function in regulating female fertility is largely unknown. Study design size, duration: We carried out RNA sequencing after immunoprecipitation of endogenous DAZL from human foetal ovarian tissue (17 weeks of gestation, obtained after elective termination of pregnancy) to identify novel DAZL targets involved in meiosis (n = 3 biological replicates). Participants/materials, setting, methods: Using quantitative RT-PCR, we examined the expression of selected RNAs identified by our immunoprecipitation across gestation, and visualised the expression of potential target SMC1B in relation to DAZL, with a combination of in situ hybridisation and immunohistochemistry. 3' untranslated region (3'UTR)-luciferase reporter assays and polysome profile analysis were used to investigate the regulation of three RNA targets by DAZL, representing key functionalities: SYCP1, TEX11 and SMC1B. Main results and the role of chance: We identified 764 potential RNA targets of DAZL in the human foetal ovary (false discovery rate 0.05 and log-fold change ≥ 2), with functions in synaptonemal complex formation (SYCP1, SYCP3), cohesin formation (SMC1B, RAD21), spindle assembly checkpoint (MAD2L1, TRIP13) and recombination and DNA repair (HORMAD1, TRIP13, TEX11, RAD18, RAD51). We demonstrated that the translation of novel targets SYCP1 (P = 0.004), TEX11 (P = 0.004) and SMC1B (P = 0.002) is stimulated by the presence of DAZL but not by a mutant DAZL with impaired RNA-binding activity. Large scale data: The raw data are available at GEO using the study ID: GSE81524. Limitations, reasons for caution: This analysis is based on identification of DAZL targets at the time when meiosis starts in the ovary: it may have other targets at other stages of oocyte development, and in the testis. Representative targets were validated, but detailed analysis was not performed on the majority of putative targets. Wider implications of the findings: These data indicate roles for DAZL in the regulation of several key functions in human oocytes. Through the translational regulation of novel RNA targets SMC1B and TEX11, DAZL may have a key role in regulating chromosome cohesion and DNA recombination; two processes fundamental in determining oocyte quality and whose establishment in foetal life may support lifelong fertility. Study funding and competing interest(s): This study was supported by the UK Medical Research Council (grant no G1100357 to R.A.A. and an intramural MRC programme grant to I.R.A.). The authors declare no competing interests.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Fertilidade/genética , Feto/metabolismo , Ovário/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Aborto Legal , Animais , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/química , Cromossomos/metabolismo , Proteínas de Ligação a DNA , Feminino , Feto/citologia , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Células HEK293 , Humanos , Meiose , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ovário/citologia , Ovário/crescimento & desenvolvimento , Gravidez , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Recombinação Genética , Transdução de Sinais
16.
Mol Hum Reprod ; 22(6): 377-83, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26989066

RESUMO

The RNA binding protein deleted in azoospermia-like (Dazl) is a key determinant of germ cell maturation and entry into meiosis in rodents and other animal species. Although the complex phenotype of Dazl deficiency in both sexes, with defects at multiple stages of germ cell development and during meiosis, demonstrates its obligate significance in fertility in animal models, its involvement in human fertility is less clear. As an RNA binding protein, identification of the in vivo mRNA targets of DAZL is necessary to understand its influence. Thus far, only a small number of Dazl targets have been identified, which typically have pivotal roles in germ cell development and meiotic progression. However, it is likely that there are a number of additional germ cell and meiosis-relevant transcripts whose translation is affected in the absence of Dazl. Efforts to identify these RNA targets have mainly been focused on spermatogenesis, and restricted to mouse. In women, prophase I occurs in fetal life and it is during this period that the ovarian follicle pool is established, thus factors that have a role in determining the quality and quantity of the ovarian reserve may have significant impact on reproductive outcomes later in adult life. Here, we suggest that DAZL may be one such factor, and there is a need for greater understanding of the role of DAZL in human oogenesis and its contribution to lifelong female fertility.


Assuntos
Fertilidade/fisiologia , Proteínas de Ligação a RNA/metabolismo , Feminino , Fertilidade/genética , Humanos , Masculino , Meiose/genética , Meiose/fisiologia , Oogênese/genética , Oogênese/fisiologia , Proteínas de Ligação a RNA/genética
17.
BMC Cancer ; 16(1): 482, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510889

RESUMO

BACKGROUND: As with many anti-cancer drugs, the topoisomerase II inhibitor etoposide is considered safe for administration to women in the second and third trimesters of pregnancy, but assessment of effects on the developing fetus have been limited. The purpose of this research was to examine the effect of etoposide on germ cells in the developing ovary. Mouse ovary tissue culture was used as the experimental model, thus allowing us to examine effects of etoposide on all stages of germ cell development in the same way, in vitro. RESULTS: Fetal ovaries from embryonic day 13.5 CD1 mice or neonatal ovaries from postnatal day 0 CD1 mice were cultured with 50-150 ng ml(-1) or 50-200 ng ml(-1) etoposide respectively, concentrations that are low relative to that in patient serum. When fetal ovaries were treated prior to follicle formation, etoposide resulted in dose-dependent damage, with 150 ng ml(-1) inducing a near-complete absence of healthy follicles. In contrast, treatment of neonatal ovaries, after follicle formation, had no effect on follicle numbers and only a minor effect on follicle health, even at 200 ng ml(-1). The sensitivity of female germ cells to etoposide coincided with topoisomerase IIα expression: in the developing ovary of both mouse and human, topoisomerase IIα was expressed in germ cells only prior to follicle formation. CONCLUSIONS: Exposure of pre-follicular ovaries, in which topoisomerase IIα expression was germ cell-specific, resulted in a near-complete elimination of germ cells prior to follicle formation, with the remaining germ cells going on to form unhealthy follicles by the end of culture. In contrast, exposure to follicle-enclosed oocytes, which no longer expressed topoisomerase IIα in the germ cells, had no effect on total follicle numbers or health, the only effect seen specific to transitional follicles. Results indicate the potential for adverse effects on fetal ovarian development if etoposide is administered to pregnant women when germ cells are not yet enclosed within ovarian follicles, a process that starts at approximately 17 weeks gestation and is only complete towards the end of pregnancy.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Etoposídeo/toxicidade , Células Germinativas/patologia , Oócitos/patologia , Folículo Ovariano/patologia , Ovário/patologia , Animais , Células Cultivadas , Feminino , Células Germinativas/efeitos dos fármacos , Camundongos , Oócitos/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Ovário/efeitos dos fármacos
18.
Hum Mol Genet ; 22(9): 1791-806, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23364048

RESUMO

DNA methylation plays an important role in suppressing retrotransposon activity in mammalian genomes, yet there are stages of mammalian development where global hypomethylation puts the genome at risk of retrotransposition-mediated genetic instability. Hypomethylated primordial germ cells appear to limit this risk by expressing a cohort of retrotransposon-suppressing genome-defence genes whose silencing depends on promoter DNA methylation. Here, we investigate whether similar mechanisms operate in hypomethylated trophectoderm-derived components of the mammalian placenta to couple expression of genome-defence genes to the potential for retrotransposon activity. We show that the hypomethylated state of the mouse placenta results in activation of only one of the hypomethylation-sensitive germline genome-defence genes: Tex19.1. Tex19.1 appears to play an important role in placenta function as Tex19.1(-/-) mouse embryos exhibit intra-uterine growth retardation and have small placentas due to a reduction in the number of spongiotrophoblast, glycogen trophoblast and sinusoidal trophoblast giant cells. Furthermore, we show that retrotransposon mRNAs are derepressed in Tex19.1(-/-) placentas and that protein encoded by the LINE-1 retrotransposon is upregulated in hypomethylated trophectoderm-derived cells that normally express Tex19.1. This study suggests that post-transcriptional genome-defence mechanisms are operating in the placenta to protect the hypomethylated cells in this tissue from retrotransposons and suggests that imbalances between retrotransposon activity and genome-defence mechanisms could contribute to placenta dysfunction and disease.


Assuntos
Retardo do Crescimento Fetal/genética , Elementos Nucleotídeos Longos e Dispersos , Proteínas Nucleares/genética , Placenta/metabolismo , Animais , Metilação de DNA , Feminino , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Placenta/citologia , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Análise de Sequência de DNA , Trofoblastos/metabolismo , Regulação para Cima
19.
Development ; 139(19): 3623-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949617

RESUMO

Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.


Assuntos
Metilação de DNA/fisiologia , Desenvolvimento Embrionário/genética , Epigênese Genética , Genoma , Células Germinativas/metabolismo , Regiões Promotoras Genéticas , Animais , Células Cultivadas , Montagem e Desmontagem da Cromatina/genética , Citoproteção/genética , Dano ao DNA/genética , Embrião de Mamíferos , Epigênese Genética/fisiologia , Genoma/genética , Células Germinativas/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Regiões Promotoras Genéticas/fisiologia
20.
Cell Mol Life Sci ; 71(9): 1581-605, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24045705

RESUMO

The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline.


Assuntos
Genoma , Células Germinativas/metabolismo , Retroelementos/genética , Animais , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Germinativas/citologia , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa