Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29804835

RESUMO

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Assuntos
Potenciação de Longa Duração , Memória , Neurônios/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipocampo/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Optogenética , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico , Potenciais Sinápticos/efeitos dos fármacos
2.
Curr Biol ; 33(18): 3942-3950.e3, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586373

RESUMO

Remote memories play an important role in how we perceive the world, and they are rooted throughout the brain in "engrams": ensembles of cells that are formed during acquisition. Upon their reactivation, a specific memory can be recalled.1,2,3,4,5,6,7,8,9,10,11,12 Many studies have focused on the ensembles in CA1 of the hippocampus and the anterior cingulate cortex (ACC). However, the evolution of these components during systems' consolidation has not yet been comprehensively addressed.13,14,15,16 By applying transgenic approaches for ensemble identification, CLARITY, retro-AAV, and pseudo-rabies virus for circuit mapping, and chemogenetics for functional interrogation, we addressed the dynamics of recent and remote CA1 ensembles. We expected both stability (as they represent the same memory) and maturation (over time). Indeed, we found that CA1 engrams remain stable between recent and remote recalls, and the inhibition of engrams for recent recall during remote recall functionally impairs memory. We also found that new cells in the remote recall engram in the CA1 are not added randomly during maturation but differ according to their connections. First, we show in two ways that the anterograde CA1 → ACC engram cell projection grows larger. Finally, in the retrograde projections, the ACC reduces input to CA1 engram cells, whereas input from the entorhinal cortex and paraventricular nucleus of the thalamus increases. Our results shine fresh light on systems' consolidation by providing a deeper understanding of engram stability and maturation in the transition from recent to remote memory.


Assuntos
Hipocampo , Memória de Longo Prazo , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Rememoração Mental/fisiologia , Córtex Entorrinal , Giro do Cíngulo/fisiologia
3.
Nat Neurosci ; 23(10): 1229-1239, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747787

RESUMO

Remote memories depend on coordinated activity in the hippocampus and frontal cortices, but the timeline of these interactions is debated. Astrocytes sense and modify neuronal activity, but their role in remote memory is scarcely explored. We expressed the Gi-coupled designer receptor hM4Di in CA1 astrocytes and discovered that astrocytic manipulation during learning specifically impaired remote, but not recent, memory recall and decreased activity in the anterior cingulate cortex (ACC) during retrieval. We revealed massive recruitment of ACC-projecting CA1 neurons during memory acquisition, which was accompanied by the activation of ACC neurons. Astrocytic Gi activation disrupted CA3 to CA1 communication in vivo and reduced the downstream response in the ACC. In behaving mice, it induced a projection-specific inhibition of CA1-to-ACC neurons during learning, which consequently prevented ACC recruitment. Finally, direct inhibition of CA1-to-ACC-projecting neurons spared recent and impaired remote memory. Our findings suggest that remote memory acquisition involves projection-specific functions of astrocytes in regulating CA1-to-ACC neuronal communication.


Assuntos
Astrócitos/fisiologia , Giro do Cíngulo/fisiologia , Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Neurônios/fisiologia , Animais , Condicionamento Clássico/fisiologia , Medo/fisiologia , Masculino , Rememoração Mental/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia
4.
Neuroscience ; 370: 14-26, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28571720

RESUMO

Astrocytes have been generally believed to perform mainly homeostatic and supportive functions for neurons in the central nervous system. Recently, a growing body of evidence suggests previously unrecognized and surprising functions for astrocytes, including regulation of synaptic formation, transmission and plasticity, all of which are considered as the infrastructure for information processing and memory formation and stabilization. This review discusses the involvement of astrocytes in memory functions and the possible mechanisms that may underlie it. We review the important breakthroughs obtained in this field, as well as some of the controversies that arose from the past difficulty to manipulate these cells in a cell type-specific and non-invasive manner. Finally, we present new research avenues based on the advanced tools becoming available in recent years: optogenetics and chemogenetics, and the potential ways in which these tools may further illuminate the role of astrocytes in memory processes.


Assuntos
Astrócitos/fisiologia , Memória/fisiologia , Animais , Humanos , Plasticidade Neuronal/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa