Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt C): 112296, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34755609

RESUMO

BACKGROUND: Early, chronic, low-level fluoride exposure has been linked to attention-deficit hyperactivity disorder (ADHD) and learning deficits in children. Rodent studies suggest a link between fluoride exposure and internalizing behaviors. No human studies have examined the impact of fluoride on internalizing behaviors during adolescence. OBJECTIVE: Evaluate the relationship between urinary fluoride and early adolescent internalizing symptoms in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). METHODS: Participants in CCAAPS provided non-fasting spot urine samples at age 12 years (n = 286). Urine samples were analyzed using a microdiffusion method to determine childhood urinary fluoride (CUF) concentrations and were log-transformed for analyses. Caregivers of CCAAPS participants completed the Behavior Assessment System for Children-2 (BASC-2) at the age 12 study visit to assess internalizing symptoms (e.g., anxiety, depression, somatization), and a composite score of the three domains; T-scores ≥ 60 were used to identify adolescents in a clinically "at-risk" range. Race, age of the adolescent, household income, maternal age at birth, caregiver depression, caregiver-child relationships, and age 12-year serum cotinine concentrations were considered covariates in regression models. Sex-specific effects of fluoride exposures were investigated through the inclusion of interaction terms. RESULTS: Higher CUF concentrations were significantly associated with increased somatization (ß = 3.64, 95% CI 0.49, 6.81) and internalizing composite T-scores in a clinically "at-risk" range (OR = 2.9, 95% CI 1.24, 6.9). Compared to females, males with higher CUF concentrations had more internalizing (pinteraction = 0.04) and somatization symptoms (pinteraction = 0.02) and were nearly seven times more likely to exhibit "at-risk" internalizing symptomology. CUF concentrations were not significantly associated with depression or anxiety symptoms. CONCLUSIONS: This is the first study to link fluoride exposure and internalizing symptoms, specifically somatization. Somatization represents an interface of physical and psychological health. Continued follow-up will help shed light on the sex-specific relationship between fluoride and mental health and the role of somatization.


Assuntos
Poluição do Ar , Transtorno do Deficit de Atenção com Hiperatividade , Adolescente , Ansiedade , Criança , Feminino , Fluoretos/toxicidade , Humanos , Masculino , Saúde Mental
2.
Artigo em Inglês | MEDLINE | ID: mdl-34948493

RESUMO

This review focuses on the synthesis of current experimental and observational data regarding the effect of fluoride exposure on childhood mental health and the role of mitochondrial function as a mechanism of action. We aggregated data on the relationships between fluoride neurotoxicity, mitochondrial function, and cognitive and mental health using PubMed. Current animal and human research suggest that prenatal and perinatal fluoride exposure might have neurotoxic effects. These studies observed physical changes (fur loss and delayed reflex development in animals), intelligence loss, increased hyperactivity, and irregular moods associated with fluoride exposure. Two gaps in the literature were identified: (1) there is limited research on the mental and emotional impacts of fluoride exposure compared to research on cognitive outcomes, and (2) human studies primarily focus on prenatal and perinatal exposure, with little research conducted at other time points (e.g., adolescence). Furthermore, there is no agreed-upon mechanism for the neurotoxic effects of fluoride; however, fluoride can induce mitochondrial damage, including decreasing circulating mitochondrial DNA content, dysregulating biogenesis, and circular structure loss. Additionally, many neurodevelopmental conditions have mitochondrial underpinnings. More work is needed to elucidate the impact and timing of fluoride exposure on mental health and the role of mitochondrial function as a biological mechanism.


Assuntos
Síndromes Neurotóxicas , Efeitos Tardios da Exposição Pré-Natal , Animais , Criança , Cognição , Feminino , Fluoretos/toxicidade , Humanos , Saúde Mental , Mitocôndrias , Síndromes Neurotóxicas/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa