Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell ; 23(7): 2619-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21764992

RESUMO

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Elétrons , Hidrogênio/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Prótons , Aerobiose , Anaerobiose , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Chlamydomonas reinhardtii/citologia , Chlamydomonas reinhardtii/genética , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Teste de Complementação Genética , Hidrogenase/metabolismo , Luz , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/efeitos dos fármacos , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ionóforos de Próton/farmacologia , Enxofre/metabolismo
2.
Proteomics ; 11(21): 4266-73, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21928291

RESUMO

Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.


Assuntos
Chlamydomonas reinhardtii/química , Microalgas/química , Proteínas de Plantas/análise , Proteoma/análise , Chlamydomonas reinhardtii/metabolismo , Metabolismo dos Lipídeos , Microalgas/metabolismo , Organelas/química , Organelas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica
3.
Biochim Biophys Acta ; 1777(2): 163-72, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17988648

RESUMO

In the purple photosynthetic bacterium Rhodopseudomonas palustris, far-red illumination induces photosystem synthesis via the action of the bacteriophytochrome RpBphP1. This bacteriophytochrome antagonizes the repressive effect of the transcriptional regulator PpsR2 under aerobic condition. We show here that, in addition to photosystem synthesis, far-red light induces a significant growth rate limitation, compared to cells grown in the dark, linked to a decrease in the respiratory activity. The phenotypes of mutants inactivated in RpBphP1 and PpsR2 show their involvement in this regulation. Based on enzymatic and transcriptional studies, a 30% decrease in the expression of the alpha-ketoglutarate dehydrogenase complex, a central enzyme of the Krebs cycle, is observed under far-red light. We propose that this decrease is responsible for the down-regulation of respiration in this condition. This regulation mechanism at the Krebs cycle level still allows the formation of the photosynthetic apparatus via the synthesis of key biosynthesis precursors but lowers the production of NADH, i.e. the respiratory activity. Overall, the dual action of RpBphP1 on the regulation of both the photosynthesis genes and the Krebs cycle allows a fine adaptation of bacteria to environmental conditions by enhancement of the most favorable bioenergetic process in the light, photosynthesis versus respiration.


Assuntos
Proteínas de Bactérias/fisiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/biossíntese , Pigmentos Biológicos/fisiologia , Rodopseudomonas/fisiologia , Rodopseudomonas/genética , Rodopseudomonas/crescimento & desenvolvimento , Rodopseudomonas/efeitos da radiação
4.
J Bacteriol ; 190(17): 5824-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18606738

RESUMO

The recent sequence analysis of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain BTAi1 revealed the unexpected presence of a pucBA operon encoding the apoproteins of peripheral light-harvesting (LH) complexes. This pucBA operon is found close to a bacteriophytochrome gene (BphP3(B BTAi1)) and a two-component transcriptional regulator gene (TF(BTAi1) gene). In this study, we show that BphP3(B BTAi1) acts as a bona fide bacteriophytochrome and controls, according to light conditions, the expression of the pucBA operon found in its vicinity. This light regulatory pathway is very similar to the one previously described for chromo-BphP4(Rp) in Rhodopseudomonas palustris and conducts the synthesis of a peripheral LH complex. This LH complex presents a single absorption band at low temperature, centered at 803 nm. Fluorescence emission analysis of intact cells indicates that this peripheral LH complex does not act as an efficient light antenna. One putative function of this LH complex could be to evacuate excess light energy in order to protect Bradyrhizobium strain BTAi1, an aerobic anoxygenic photosynthetic bacterium, against photooxidative damage during photosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese/fisiologia , Aerobiose , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Histidina Quinase , Complexos de Proteínas Captadores de Luz/genética , Óperon/genética , Fenótipo , Fotossíntese/genética , Filogenia , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
PLoS One ; 7(8): e41922, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870263

RESUMO

To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9)TKE(12) sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d) = 25±6 nM to K(d) = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d) = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as)(P-O) and ν(s)(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as)(UO(2))(2+) vibration (from 923 cm(-1) to 908 cm(-1)) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Calmodulina/química , Engenharia de Proteínas , Urânio/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Caseína Quinase II/química , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Concentração de Íons de Hidrogênio , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Urânio/metabolismo , Urânio/toxicidade
6.
EMBO J ; 26(14): 3322-31, 2007 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-17581629

RESUMO

Bacteriophytochromes are red/far-red photoreceptors that bacteria use to mediate sensory responses to their light environment. Here, we show that the photosynthetic bacterium Rhodopseudomonas palustris has two distinct types of bacteriophytochrome-related protein (RpBphP4) depending upon the strain considered. The first type binds the chromophore biliverdin and acts as a light-sensitive kinase, thus behaving as a bona fide bacteriophytochrome. However, in most strains, RpBphP4 does not to bind this chromophore. This loss of light sensing is replaced by a redox-sensing ability coupled to kinase activity. Phylogenetic analysis is consistent with an evolutionary scenario, where a bacteriophytochrome ancestor has adapted from light to redox sensing. Both types of RpBphP4 regulate the synthesis of light harvesting (LH2) complexes according to the light or redox conditions, respectively. They modulate the affinity of a transcription factor binding to the promoter regions of LH2 complex genes by controlling its phosphorylation status. This is the first complete description of a bacteriophytochrome signal transduction pathway involving a two-component system.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Molecular , Luz , Rodopseudomonas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Complexos de Proteínas Captadores de Luz/biossíntese , Complexos de Proteínas Captadores de Luz/efeitos dos fármacos , Complexos de Proteínas Captadores de Luz/efeitos da radiação , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução/efeitos da radiação , Oxigênio/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Filogenia , Fitocromo/química , Fitocromo/genética , Fitocromo/isolamento & purificação , Fitocromo/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Rodopseudomonas/efeitos dos fármacos , Rodopseudomonas/genética , Rodopseudomonas/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
7.
J Biol Chem ; 282(10): 7320-8, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17218312

RESUMO

Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.


Assuntos
Proteínas de Bactérias/genética , Bradyrhizobium/genética , Transferência Genética Horizontal , Fitocromo/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Fluorescência , Dados de Sequência Molecular , Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Temperatura
8.
J Biol Chem ; 280(37): 32389-97, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16009707

RESUMO

Phytochromes are chromoproteins found in plants and bacteria that switch between two photointerconvertible forms via the photoisomerization of their chromophore. These two forms, Pr and Pfr, absorb red and far-red light, respectively. We have characterized the biophysical and biochemical properties of two bacteriophytochromes, RpBphP2 and RpBphP3, from the photosynthetic bacterium Rhodopseudomonas palustris. Their genes are contiguous and localized near the pucBAd genes encoding the polypeptides of the light harvesting complexes LH4, whose synthesis depends on the light intensity. At variance with all (bacterio)phytochromes studied so far, the light-induced isomerization of the chromophore of RpBphP3 converts the Pr form to a form absorbing at shorter wavelength around 645 nm, designated as Pnr for near red. The quantum yield for the transformation of Pr into Pnr is about 6-fold smaller than for the reverse reaction. Both RpBphP2 and RpBphP3 autophosphorylate in their dark-adapted Pr forms and transfer their phosphate to a common response regulator Rpa3017. Under semiaerobic conditions, LH4 complexes replace specifically the LH2 complexes in wild-type cells illuminated by wavelengths comprised between 680 and 730 nm. In contrast, mutants deleted in each of these two bacteriophytochromes display no variation in the composition of their light harvesting complexes whatever the light intensity. From both the peculiar properties of these bacteriophytochromes and the phenotypes of their deletion mutants, we propose that they operate in tandem to control the synthesis of LH4 complexes by measuring the relative intensities of 645 and 710 nm lights.


Assuntos
Fitocromo/química , Rodopseudomonas/fisiologia , Sequência de Aminoácidos , Fenômenos Bioquímicos , Bioquímica , Fenômenos Biofísicos , Biofísica , Cisteína/química , Eletroforese em Gel de Poliacrilamida , Luz , Modelos Químicos , Dados de Sequência Molecular , Mutação , Fenótipo , Fosforilação , Complexo de Proteínas do Centro de Reação Fotossintética/química , Fitocromo/classificação , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo
9.
Nat Struct Biol ; 10(11): 928-34, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14528294

RESUMO

The structure of the respiratory nitrate reductase (NapAB) from Rhodobacter sphaeroides, the periplasmic heterodimeric enzyme responsible for the first step in the denitrification process, has been determined at a resolution of 3.2 A. The di-heme electron transfer small subunit NapB binds to the large subunit with heme II in close proximity to the [4Fe-4S] cluster of NapA. A total of 57 residues at the N- and C-terminal extremities of NapB adopt an extended conformation, embracing the NapA subunit and largely contributing to the total area of 5,900 A(2) buried in the complex. Complex formation was studied further by measuring the variation of the redox potentials of all the cofactors upon binding. The marked effects observed are interpreted in light of the three-dimensional structure and depict a plasticity that contributes to an efficient electron transfer in the complex from the heme I of NapB to the molybdenum catalytic site of NapA.


Assuntos
Nitrato Redutases/química , Proteínas Periplásmicas/química , Dimerização , Cinética , Nitrato Redutase , Nitrato Redutases/metabolismo , Oxirredução , Proteínas Periplásmicas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Rhodobacter sphaeroides/enzimologia
10.
J Biol Chem ; 279(43): 44407-16, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15304477

RESUMO

The two closely related bacteria Bradyrhizobium and Rhodopseudomonas palustris show an unusual mechanism of regulation of photosystem formation by light thanks to a bacteriophytochrome that antirepresses the regulator PpsR. In these two bacteria, we found out, unexpectedly, that two ppsR genes are present. We show that the two Bradyrhizobium PpsR proteins exert antagonistic effects in the regulation of photosystem formation with a classical repressor role for PpsR2 and an unexpected activator role for PpsR1. DNase I footprint analysis show that both PpsR bind to the same DNA TGTN12ACA motif that is present in tandem in the bchC promoter and the crtED intergenic region. Interestingly, the cycA and aerR promoter regions that contain only one conserved palindrome are recognized by PpsR2, but not PpsR1. Further biochemical analyses indicate that PpsR1 only is redox sensitive through the formation of an intermolecular disulfide bond, which changes its oligomerization state from a tetramer to an octamer under oxidizing conditions. Moreover, PpsR1 presents a higher DNA affinity under its reduced form in contrast to what has been previously found for PpsR or its homolog CrtJ from the Rhodobacter species. These results suggest that regulation of photosystem synthesis in Bradyrhizobium involves two PpsR competing for the binding to the same photosynthesis genes and this competition might be modulated by two factors: light via the antagonistic action of a bacteriophytochrome on PpsR2 and redox potential via the switch of PpsR1 oligomerization state.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/metabolismo , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica , Oxirredução , Proteínas Repressoras/química , Motivos de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência de Bases , Cromatografia em Gel , Clonagem Molecular , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Dissulfetos , Ditiotreitol/farmacologia , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Ligantes , Luz , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Oxigênio/metabolismo , Fotossíntese , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/fisiologia , Rhodobacter/metabolismo , beta-Galactosidase/metabolismo
11.
Photochem Photobiol Sci ; 3(6): 587-91, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15170489

RESUMO

The synthesis of the photosynthetic apparatus of different strains of Rhodopseudomonas palustris has been studied as a function of the oxygen concentration and far-red light. For strain CEA001, only a small amount of photosynthetic apparatus is synthesized in the dark for oxygen concentration higher than 8% whereas synthesis is strongly enhanced by far-red light illumination. This enhancement is due to the action of a bacteriophytochrome (ORF2127/ORF2128), which antagonizes the repressor PpsR. On the contrary, a large fraction of photosystem is synthesized in the dark and far-red illumination induces no enhancement in strain CGA009. This difference in phenotype of strain CGA009 is explained by a single point-mutation R428C in the helix-turn-helix DNA binding motif of PpsR, rendering it inactive. In addition, a frame-shift mutation had occurred in the gene encoding bacteriophytochrome (ORF2127/ORF2128), conducting to a truncated inactive sensor. We propose that these mutations occurred in culture. Bacteria have developed a sophisticated regulatory process to synthesize their photosynthetic apparatus when light is available. This process is a critical advantage for the bacteria under natural conditions since they optimize their development depending on the available energy resources. On the contrary, under laboratory growth conditions where there is no substrate limitation, there is no crucial need for such a regulation and deleterious mutations affecting this process are of no importance.


Assuntos
Proteínas de Bactérias/metabolismo , Fotossíntese/fisiologia , Fitocromo/fisiologia , Rodopseudomonas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Bradyrhizobium/genética , Clonagem Molecular , Primers do DNA , DNA Bacteriano/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mapeamento por Restrição , Rodopseudomonas/classificação , Rodopseudomonas/genética , Rodopseudomonas/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa