Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Epilepsia ; 58(6): 1063-1072, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28374921

RESUMO

OBJECTIVES: Neuroinflammation plays a critical role in the pathophysiology of mesial temporal lobe epilepsy. We aimed to evaluate whether intracerebral transplantation of interleukin 13-producing mesenchymal stem cells (IL-13 MSCs) induces an M2 microglia/macrophage activation phenotype in the hippocampus with an epileptogenic insult, thereby providing a neuroprotective environment with reduced epileptogenesis. METHODS: Genetically engineered syngeneic IL-13 MSCs or vehicle was injected within the hippocampus 1 week before the intrahippocampal kainic acid-induced status epilepticus (SE) in C57BL/6J mice. Neuroinflammation was evaluated at disease onset as well as during the chronic epilepsy period (9 weeks). In addition, continuous video-electroencephalography (EEG) (vEEG) monitoring was obtained during the chronic epilepsy period (between 6 and 9 weeks after SE). RESULTS: Evaluation of vEEG recordings suggested that IL-13 MSC grafts did not affect the severity and duration of SE or the seizure burden during the chronic epilepsy period, when compared to the vehicle treated SE mice. An M2-activation phenotype was induced in microglia/macrophages that infiltrated the -13 MSC graft site, as evidenced by the arginase1 expression at the graft site at both the 2-week and 9-week time-points. However, M2-activated immune cells were rarely observed outside the graft site and, accordingly, the neuroinflammatory response or cell loss related to SE induction was not altered by IL-13 MSC grafting. Moreover, an increase in the proportion of F4/80+ cells was observed in the IL-13 MSC group compared to the controls. SIGNIFICANCE: Our data suggest that MSC-based IL-13 delivery to induce M2 glial activation does not provide any neuroprotective or disease-modifying effects in a mouse model of epilepsy. Moreover, use of cell grafting to deliver bioactive compounds for modulating neuroinflammation may have confounding effects in disease pathology of epilepsy due to the additional immune response generated by the grafted cells.


Assuntos
Modelos Animais de Doenças , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Interleucina-13/farmacologia , Ativação de Macrófagos , Transplante de Células-Tronco Mesenquimais , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Sistemas de Liberação de Medicamentos , Eletrodos Implantados , Eletroencefalografia/efeitos dos fármacos , Engenharia Genética , Injeções , Interleucina-13/genética , Interleucina-13/metabolismo , Masculino , Camundongos Endogâmicos C57BL
2.
J Neurotrauma ; 36(5): 768-788, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30032713

RESUMO

There is currently a lack of prognostic biomarkers to predict the different sequelae following traumatic brain injury (TBI). The present study investigated the hypothesis that subacute neuroinflammation and microstructural changes correlate with chronic TBI deficits. Rats were subjected to controlled cortical impact (CCI) injury, sham surgery, or skin incision (naïve). CCI-injured (n = 18) and sham-operated rats (n = 6) underwent positron emission tomography (PET) imaging with the translocator protein 18 kDa (TSPO) radioligand [18F]PBR111 and diffusion tensor imaging (DTI) in the subacute phase (≤3 weeks post-injury) to quantify inflammation and microstructural alterations. CCI-injured, sham-operated, and naïve rats (n = 8) underwent behavioral testing in the chronic phase (5.5-10 months post-injury): open field and sucrose preference tests, two one-week video-electroencephalogram (vEEG) monitoring periods, pentylenetetrazole (PTZ) seizure susceptibility tests, and a Morris water maze (MWM) test. In vivo imaging revealed pronounced neuroinflammation, decreased fractional anisotropy, and increased diffusivity in perilesional cortex and ipsilesional hippocampus of CCI-injured rats. Behavioral analysis revealed disinhibition, anhedonia, increased seizure susceptibility, and impaired learning in CCI-injured rats. Subacute TSPO expression and changes in DTI metrics significantly correlated with several chronic deficits (Pearson's |r| = 0.50-0.90). Certain specific PET and DTI parameters had good sensitivity and specificity (area under the receiver operator characteristic [ROC] curve = 0.85-1.00) to distinguish between TBI animals with and without particular behavioral deficits. Depending on the investigated behavioral deficit, PET or DTI data alone, or the combination, could very well predict the variability in functional outcome data (adjusted R2 = 0.54-1.00). Taken together, both TSPO PET and DTI seem promising prognostic biomarkers to predict different chronic TBI sequelae.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Encefalite/patologia , Neuroimagem/métodos , Recuperação de Função Fisiológica , Animais , Imagem de Tensor de Difusão/métodos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa