Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
New Phytol ; 226(6): 1796-1808, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32020611

RESUMO

Recent studies mainly in Arabidopsis have renewed interest and discussion in some of the key issues in hydrotropism of roots, such as the site of water sensing and the involvement of auxin. We examined hydrotropism in maize (Zea mays) primary roots. We determined the site of water sensing along the root using a nonintrusive method. Kinematic analysis was conducted to investigate spatial root elongation during hydrotropic response. Indole-3-acetic acid (IAA) and other hormones were quantified using LC-MS/MS. The transcriptome was analyzed using RNA sequencing. Main results: The very tip of the root is the most sensitive to the hydrostimulant. Hydrotropic bending involves coordinated adjustment of spatial cell elongation and cell flux. IAA redistribution occurred in maize roots, preceding hydrotropic bending. The redistribution is caused by a reduction of IAA content on the side facing a hydrostimulant, resulting in a higher IAA content on the dry side. Transcriptomic analysis of the elongation zone prior to bending identified IAA response and lignin synthesis/wall cross-linking as some of the key processes occurring during the early stages of hydrotropic response. We conclude that maize roots differ from Arabidopsis in the location of hydrostimulant sensing and the involvement of IAA redistribution.


Assuntos
Raízes de Plantas , Zea mays , Cromatografia Líquida , Ácidos Indolacéticos , Espectrometria de Massas em Tandem , Tropismo , Zea mays/genética
2.
Cancers (Basel) ; 14(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406526

RESUMO

This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration. In vivo studies conducted in the syngeneic 4T1 model, which closely mimics human TNBC in terms of sites of metastasis, reveal reduced tumor burden and lung metastasis. The mechanism of action of 4SC-202 may involve effects on cancer stem cells (CSC) which can self-renew and form metastatic lesions. Approximately 5% of the total 4T1 cell population grown in three-dimensional scaffolds had a distinct CD44high/CD24low CSC profile which decreased after treatment. Bulk transcriptome (RNA) sequencing analyses of 4T1 tumors reveal changes in metastasis-related pathways in 4SC-202-treated tumors, including changes to expression levels of genes implicated in cell migration and cell motility. In summary, 4SC-202 treatment of tumors from a highly metastatic murine model of TNBC reduces metastasis and warrants further preclinical studies.

3.
Methods Mol Biol ; 2352: 171-181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34324187

RESUMO

The processes that underlie neuronal conversion ultimately involve a reorganization of transcriptional networks to establish a neuronal cell fate. As such, transcriptional profiling is a key component toward understanding this process. In this chapter, we will discuss methods of elucidating transcriptional networks during neuronal reprogramming and considerations that should be incorporated in experimental design.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Perfilação da Expressão Gênica , Neurônios/citologia , Neurônios/metabolismo , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de RNA , Análise de Célula Única/métodos
4.
Mol Cancer Res ; 19(12): 2015-2025, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34593608

RESUMO

Although many cancer prognoses have improved in the past 50 years due to advancements in treatments, there has been little improvement in therapies for small-cell lung cancer (SCLC). One promising avenue to improve treatment for SCLC is to understand its underlying genetic alterations that drive its formation, growth, and cellular heterogeneity. RB1 loss is one key driver of SCLC, and RB1 loss has been associated with an increase in pluripotency factors such as SOX2. SOX2 is highly expressed and amplified in SCLC and has been associated with SCLC growth. Using a genetically engineered mouse model, we have shown that Sox2 is required for efficient SCLC formation. Furthermore, genome-scale binding assays have indicated that SOX2 can regulate key SCLC pathways such as NEUROD1 and MYC. These data suggest that SOX2 can be associated with the switch of SCLC from an ASCL1 subtype to a NEUROD1 subtype. Understanding this genetic switch is key to understanding such processes as SCLC progression, cellular heterogeneity, and treatment resistance. IMPLICATIONS: Understanding the molecular mechanisms of SCLC initiation and development are key to opening new potential therapeutic options for this devastating disease.


Assuntos
Neoplasias Pulmonares/genética , Oncogenes/genética , Fatores de Transcrição SOXB1/genética , Carcinoma de Pequenas Células do Pulmão/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos
5.
Cancers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439353

RESUMO

Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo. By analyzing cell function in vitro, we show that the anti-tumor effect of 4SC-202 involves the combined induction of cell-cycle arrest at the G2/M phase and apoptotic program, as well as a reduction in cell invasion and migration capabilities. We also found that 4SC-202 has little capacity to promote osteogenic differentiation. Remarkably, 4SC-202 revised the global transcriptome and induced distinct signatures of gene expression in vitro. Moreover, 4SC-202 decreased tumor growth of established human tumor xenografts in immunodeficient mice in vivo. We further reveal key targets regulated by 4SC-202 that contribute to tumor cell growth and survival, and canonical signaling pathways associated with progression and metastasis of osteosarcoma. Our study suggests that 4SC-202 may be exploited as a valuable drug to promote more effective treatment of patients with osteosarcoma and provide molecular insights into the mechanism of action of class I HDAC inhibitors.

7.
Artigo em Inglês | MEDLINE | ID: mdl-32118046

RESUMO

Functional variants in nuclear envelope genes are implicated as underlying causes of cardiopathology. To examine the potential association of single nucleotide variants of nucleoporin genes with cardiac disease, we employed a prognostic scoring approach to investigate variants of NUP155, a nucleoporin gene clinically linked with atrial fibrillation. Here we implemented bioinformatic profiling and predictive scoring, based on the gnomAD, National Heart Lung and Blood Institute-Exome Sequencing Project (NHLBI-ESP) Exome Variant Server, and dbNSFP databases to identify rare single nucleotide variants (SNVs) of NUP155 potentially associated with cardiopathology. This predictive scoring revealed 24 SNVs of NUP155 as potentially cardiopathogenic variants located primarily in the N-terminal crescent-shaped domain of NUP155. In addition, a predicted NUP155 R672G variant prioritized in our study was mapped to a region within the alpha helical stack of the crescent domain of NUP155. Bioinformatic analysis of inferred protein-protein interactions of NUP155 revealed over representation of top functions related to molecular transport, RNA trafficking, and RNA post-transcriptional modification. Topology analysis revealed prioritized hubs critical for maintaining network integrity and informational flow that included FN1, SIRT7, and CUL7 with nodal enrichment of RNA helicases in the topmost enriched subnetwork. Furthermore, integration of the top 5 subnetworks to capture network topology of an expanded framework revealed that FN1 maintained its hub status, with elevation of EED, CUL3, and EFTUD2. This is the first study to report novel discovery of a NUP155 subdomain hotspot that enriches for allelic variants of NUP155 predicted to be clinically damaging, and supports a role for RNA metabolism in cardiac disease and development.

8.
Oncotarget ; 11(27): 2597-2610, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32676162

RESUMO

Outcomes have not improved for metastatic osteosarcoma for several decades. In part, this failure to develop better therapies stems from a lack of understanding of osteosarcoma biology, given the rarity of the disease and the high genetic heterogeneity at the time of diagnosis. We report here the successful establishment of a new human osteosarcoma cell line, COS-33, from a patient-derived xenograft and demonstrate retention of the biological features of the original tumor. We found high mTOR signaling activity in the cultured cells, which were sensitive to a small molecule inhibitor, rapamycin, a suppressor of the mTOR pathway. Suppressed mTOR signaling after treatment with rapamycin was confirmed by decreased phosphorylation of the S6 ribosomal protein. Increasing concentrations of rapamycin progressively inhibited cell proliferation in vitro. We observed significant inhibitory effects of the drug on cell migration, invasion, and colony formation in the cultured cells. Furthermore, we found that only a strong osteogenic inducer, bone morphogenetic protein-2, promoted the cells to differentiate into mature mineralizing osteoblasts, indicating that the COS-33 cell line may have impaired osteoblast differentiation. Grafted COS-33 cells exhibited features typical of osteosarcoma, such as production of osteoid and tumorigenicity in vivo. In addition, we revealed that the COS-33 cell line retained a complex karyotype, a homozygous deletion of the TP53 gene, and typical histological features from its original tumor. Our novel cellular model may provide a valuable platform for studying the etiology and molecular pathogenesis of osteosarcoma as well as for testing novel drugs for future genome-informed targeted therapy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa