RESUMO
Immunomodulatory cytokines can alter the tumor microenvironment and promote tumor eradication. Interleukin (IL)-27 is a pleiotropic cytokine that has potential to augment anti-tumor immunity while also facilitating anti-myeloma activity. We engineered human T cells to express a recombinant single-chain (sc)IL-27 and a synthetic antigen receptor targeting the myeloma antigen, B-cell maturation antigen, and evaluated the anti-tumor function of T cells bearing scIL-27 in vitro and in vivo. We discovered that T cells bearing scIL-27 sustained anti-tumor immunity and cytotoxicity yet manifested a profound reduction in pro-inflammatory cytokines granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha. IL-27-expressing T cells therefore present a potential avenue to avert treatment-related toxicities commonly associated with engineered T-cell therapy due to the reduced pro-inflammatory cytokine profile.
Assuntos
Interleucina-27 , Neoplasias , Humanos , Linfócitos T , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Neoplasias/terapia , Interleucinas , Interleucina-2 , Microambiente TumoralRESUMO
Background: The genesis of SMAC mimetic drugs is founded on the observation that many cancers amplify IAP proteins to facilitate their survival, and therefore removal of these pathways would re-sensitize the cells towards apoptosis. It has become increasingly clear that SMAC mimetics also interface with the immune system in a modulatory manner. Suppression of IAP function by SMAC mimetics activates the non-canonical NF-κB pathway which can augment T cell function, opening the possibility of using SMAC mimetics to enhance immunotherapeutics. Methods: We have investigated the SMAC mimetic LCL161, which promotes degradation of cIAP-1 and cIAP-2, as an agent for delivering transient costimulation to engineered BMCA-specific human TAC T cells. In doing so we also sought to understand the cellular and molecular effects of LCL161 on T cell biology. Results: LCL161 activated the non-canonical NF-κB pathway and enhanced antigen-driven TAC T cell proliferation and survival. Transcriptional profiling from TAC T cells treated with LCL161 revealed differential expression of costimulatory and apoptosis-related proteins, namely CD30 and FAIM3. We hypothesized that regulation of these genes by LCL161 may influence the drug's effects on T cells. We reversed the differential expression through genetic engineering and observed impaired costimulation by LCL161, particularly when CD30 was deleted. While LCL161 can provide a costimulatory signal to TAC T cells following exposure to isolated antigen, we did not observe a similar pattern when TAC T cells were stimulated with myeloma cells expressing the target antigen. We questioned whether FasL expression by myeloma cells may antagonize the costimulatory effects of LCL161. Fas-KO TAC T cells displayed superior expansion following antigen stimulation in the presence of LCL161, suggesting a role for Fas-related T cell death in limiting the magnitude of the T cell response to antigen in the presence of LCL161. Conclusions: Our results demonstrate that LCL161 provides costimulation to TAC T cells exposed to antigen alone, however LCL161 did not enhance TAC T cell anti-tumor function when challenged with myeloma cells and may be limited due to sensitization of T cells towards Fas-mediated apoptosis.
Assuntos
Mieloma Múltiplo , NF-kappa B , Humanos , NF-kappa B/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismoRESUMO
Engineering T cells with chimeric antigen receptors (CARs) is an effective method for directing T cells to attack tumors, but may cause adverse side effects such as the potentially lethal cytokine release syndrome. Here the authors show that the T cell antigen coupler (TAC), a chimeric receptor that co-opts the endogenous TCR, induces more efficient anti-tumor responses and reduced toxicity when compared with past-generation CARs. TAC-engineered T cells induce robust and antigen-specific cytokine production and cytotoxicity in vitro, and strong anti-tumor activity in a variety of xenograft models including solid and liquid tumors. In a solid tumor model, TAC-T cells outperform CD28-based CAR-T cells with increased anti-tumor efficacy, reduced toxicity, and faster tumor infiltration. Intratumoral TAC-T cells are enriched for Ki-67+ CD8+ T cells, demonstrating local expansion. These results indicate that TAC-T cells may have a superior therapeutic index relative to CAR-T cells.
Assuntos
Receptores de Antígenos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Proteínas Recombinantes/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Antígenos CD28/imunologia , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Engenharia Genética , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Lentivirus/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos NOD , Engenharia de Proteínas , Receptor ErbB-2/imunologia , Receptores de Antígenos/genética , Receptores de Antígenos Quiméricos/genética , Anticorpos de Domínio Único , Especificidade do Receptor de Antígeno de Linfócitos T/genética , Linfócitos T Citotóxicos/imunologia , Visão Ocular , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The adoptive transfer of a bolus of tumor-specific T lymphocytes into cancer patients is a promising therapeutic strategy. In one approach, tumor specificity is conferred upon T cells via engineering expression of exogenous receptors, such as chimeric antigen receptors (CARs). Here, we describe the generation and production of both murine and human CAR-engineered T lymphocytes using retroviruses.
Assuntos
Engenharia Genética , Vetores Genéticos/genética , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Técnicas de Cultura de Células , Técnicas de Transferência de Genes , Humanos , Imunoterapia Adotiva , Lentivirus/genética , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Retroviridae/genética , Transdução GenéticaRESUMO
The use of engineered T cells in adoptive transfer therapies has shown significant promise in treating hematological cancers. However, successes treating solid tumors are much less prevalent. Oncolytic viruses (OVs) have the capacity to induce specific lysis of tumor cells and indirectly impact tumor growth via vascular shutdown. These viruses bear natural abilities to associate with lymphocytes upon systemic administration, but therapeutic doses must be very high in order to evade antibodies and other components of the immune system. As T cells readily circulate through the body, using these cells to deliver OVs directly to tumors may provide an ideal combination. Our studies demonstrate that loading chimeric antigen receptor-engineered T cells with low doses of virus does not impact receptor expression or function in either murine or human T cells. Engineered T cells can deposit virus onto a variety of tumor targets, which can enhance the tumoricidal activity of the combination treatment. This concept appears to be broadly applicable, as we observed similar results using murine or human T cells, loaded with either RNA or DNA viruses. Overall, loading of engineered T cells with OVs represents a novel combination therapy that may increase the efficacy of both treatments.